POTENTIAL AND PITFALLS OF USING LDH RELEASE FOR THE EVALUATION OF ANIMAL CELL DEATH KINETICS

Author(s):  
A. MARC ◽  
A. WAGNER ◽  
A. MARTIAL ◽  
J.L. GOERGEN ◽  
J.M. ENGASSER ◽  
...  
Toxins ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 1 ◽  
Author(s):  
Sucharit Ray ◽  
Roshan Thapa ◽  
Peter Keyel

The largest superfamily of bacterial virulence factors is pore-forming toxins (PFTs). PFTs are secreted by both pathogenic and non-pathogenic bacteria. PFTs sometimes kill or induce pro-pathogen signaling in mammalian cells, all primarily through plasma membrane perforation, though the parameters that determine these outcomes are unclear. Membrane binding, calcium influx, pore size, and membrane repair are factors that influence PFT cytotoxicity. To test the contribution of membrane binding to cytotoxicity and repair, we compared the closely related, similarly-sized PFTs Perfringolysin O (PFO) from Clostridium perfringens and Streptolysin O (SLO) from Streptococcus pyogenes. Cell death kinetics for PFO and SLO were different because PFO increased in cytotoxicity over time. We introduced known L3 loop mutations that swap binding affinity between toxins and measured hemolytic activity, nucleated cell death kinetics and membrane repair using viability assays, and live cell imaging. Altered hemolytic activity was directly proportional to toxin binding affinity. In contrast, L3 loop alterations reduced nucleated cell death, and they had limited effects on cytotoxicity kinetics and membrane repair. This suggests other toxin structural features, like oligomerization, drives these parameters. Overall, these findings suggest that repair mechanisms and toxin oligomerization add constraints beyond membrane binding on toxin evolution and activity against nucleated cells.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
K Abe ◽  
T Yano ◽  
T Sato ◽  
H Kouzu ◽  
A Kuno ◽  
...  

Abstract Background Necroptosis, a form of programmed necrosis, has been shown to contribute to the pathogenesis of various diseases including ischemia/reperfusion injury and heart failure. We recently reported that necroptotic signals suppresses autophagy in cardiomyocytes and that rapamycin, an mTORC1 inhibitor, not only promotes autophagy but also protect the cells from necroptosis. Purpose We examined the mechanism by which rapamycin suppresses necroptosis of cardiomyocytes, focusing on regulation of RIP1 activity and autophagic flux. Methods and results In H9c2 cardiomyoblasts, necroptosis was induced by treatment with TNF and z-VAD-fmk (zVAD) for 24 h, and cell death was determined by LDH release (as % of total). The treatment with TNF/zVAD increased LDH release from 3.4±1.3% to 46.1±2.3%, and LDH release was suppressed by necrostatin-1 (5.9±0.9%), a RIP1 inhibitor, and by rapamycin (23.5±1.4%). The protective effect of rapamycin was mimicked by Ku-0063794, an mTORC1/2 inhibitor. TNF/zVAD induced RIP1-RIP3 complex formation, together with suppression of TNF-induced RIP1 cleavage, which was mitigated by rapamycin. In addition, rapamycin not only suppressed TNF/zVAD-induced phosphorylation of RIP1-Ser166, an index of RIP1 activation, but also increased phosphorylation of RIP1-Ser320, an inhibitory phosphorylation site. In cells transfected with RIP1-S320A, which lack Ser320 for inhibitory phosphorylation, rapamycin failed to suppress TNF/zVAD-induced RIP1-RIP3 binding and cell death. Immunoblot analyses showed that TNF/zVAD significantly increased level of LC3-II. The accumulation of LC3-II protein was not further increased by bafilomycin A1 (100 nM), an inhibitor of lysosomal protein degradation, indicating that accumulation of LC3-II by TNF/zVAD reflected suppression of autophagic flux. Inhibition of RIP1 by necrostatin-1 attenuated TNF/zVAD-induced accumulation of LC3 II. The restoration of autophagic flux in TNF/zVAD-treated cells by necrostatin-1 was confirmed by monitoring tandem RFP-GFP-LC3 transfected cells; necrostatin-1 increased a ratio of RFP-LC3-puncta (autolysosomes) to RFP-GFP-LC3-puncta (autophagosomes) in TNF/zVAD-treated cells. In addition, necrostatin-1 and rapamycin induced nuclear translocation of TFEB, a regulator of lysosome biogenesis, which was associated with upregulation of MCOLN1 mRNA, a downstream target of TFEB. Restoration of autophagic flux in TNF/zVAD-treated cells by necrostatin-1 was inhibited by siRNA-mediated knockdown of TFEB. Conclusion Activation of TFEB by inhibitiory phosphorylation of RIP1-Ser320 is a primary mechanism of cytoprotection afforded by mTORC1 inhibition against necroptosis.


1999 ◽  
Vol 9 (14) ◽  
pp. 775-S1 ◽  
Author(s):  
Ichiro Mitsuhara ◽  
Kamal A. Malik ◽  
Masayuki Miura ◽  
Yuko Ohashi

1998 ◽  
Vol 274 (1) ◽  
pp. H18-H26 ◽  
Author(s):  
Jan A. Post ◽  
Sheng-Yong Wang ◽  
Glenn A. Langer

This study measures cellular lactate dehydrogenase (LDH) release during metabolic inhibition as a monitor of sarcolemmal integrity as affected by variation of external pH (pHe) and Ca2+ concentration ([Ca2+]e). The sigmoidal relationship between pHe and LDH release and pHe and net Ca2+ uptake was essentially identical with the 50% maximal value occurring at pH 7.0 for both. This suggests that a process(es) sensitive to both pHe and [Ca2+]eplays a role in cell lysis during the course of metabolic inhibition. Variation of pHe during metabolic inhibition did not alter the decline in cellular ATP, nor did it affect changes in sarcolemmal phospholipid topology. Intracellular pH followed changes of pHe with a few minutes lag. Cell lysis increased in a graded manner as pHe and [Ca2+]ewere increased, but pHe was the sole determinant of lysis, i.e., [Ca2+]elevel had no effect, at the lowest (6.2) and the highest (8.0) pHe levels. pHe variation did not affect the release of radiolabeled arachidonic acid, nor did inhibitors of phospholipase A2(PLA2) affect cell lysis at varying pHe. Therefore, cellular PLA2 activation could not be implicated for a role in cell lysis in the present model of metabolic inhibition. Alternatively, we propose that Ca2+ binding to the cytoplasmic leaflet, in combination with membrane alterations secondary to the metabolic insult, combine to destabilize the sarcolemma (20). This Ca2+ binding to the negatively charged phosphatidylserine results in the expression of the bilayer destabilizing effect of phosphatidylethanolamine. This Ca2+ binding is greatly diminished by lowered pH, resulting in an attenuation of cell lysis.


2005 ◽  
Vol 288 (3) ◽  
pp. H1396-H1403 ◽  
Author(s):  
Antonio Rodriguez-Sinovas ◽  
David García-Dorado ◽  
Pilar Pina ◽  
Marisol Ruiz-Meana ◽  
Jordi Soler-Soler

Plasma membrane disruption is a characteristic feature of cell death induced by hypoxia or ischemia. Here, we investigated whether analysis of tissue electrical impedance allows detection of ongoing cell membrane rupture and necrotic cell death in hypoxic or ischemic myocardium. Twenty-eight isolated rat hearts were submitted to 5 h of ischemia ( n = 8) or hypoxia ( n = 20). Myocardial electrical impedance and lactate dehydrogenase (LDH) release were monitored. The time course of hypoxia-induced cell death was modified by altering pH (pH 7.4 or 6.4, 5 h) or by adding 3 or 10 mM glycine. Ischemia and hypoxia induced an increase in electrical impedance, followed by a plateau, and later a reduction. During hypoxia, LDH release started after a prolonged lapse of time (80.00 ± 8.37 min at pH 7.4 and 122.50 ± 11.82 min at pH 6.4). The onset of LDH release was followed by the onset of the late reduction in electrical impedance, and both were delayed by acidic pH ( P < 0.05) and by glycine ( P < 0.05). The times of onset of LDH release and of late electrical changes were significantly correlated ( r = 0.752, P < 0.001). In separate experiments, induction of sarcolemmal rupture with Triton X-100 ( n = 6) mimicked the late effects of ischemia or hypoxia on tissue impedance. The protective effects of glycine and acidosis on membrane disruption were confirmed (propidium iodide) in energy-deprived HL-1 cardiomyocytes. These results describe for the first time a late fall in electrical impedance in myocardium submitted to prolonged oxygen deprivation and demonstrate that this fall allows detection of ongoing cell necrosis.


2019 ◽  
pp. 245-253 ◽  
Author(s):  
N.V. Naryzhnaya ◽  
I. Khaliulin ◽  
Y.B. Lishmanov ◽  
M.S. Suleiman ◽  
S.Y. Tsibulnikov ◽  
...  

We studied the role of the delta, micro, and kappa opioid receptor (OR) subtypes in the cardioprotective effect of chronic continuous normobaric hypoxia (CNH) in the model of acuteanoxia-reoxygenation of isolated cardiomyocytes. Adaptation of rats to CNH was performed by their exposure to atmosphere containing 12% of O(2) for 21 days. Anoxia-reoxygenation of cardiomyocytes isolated from normoxiccontrol rats caused the death of 51 % of cells and lactate dehydrogenase (LDH) release. Adaptation of rats to CNH resulted in the anoxia/reoxygenation-induced cardiomyocyte death of only 38 %, and reduced the LDH release by 25 %. Pre-incubation of the cells with either the non-selective OR (opioid receptor) blocker naloxone (300 nM/l), the delta OR antagonist TIPP(psi) (30 nM/l), the selective delta(2) OR antagonist naltriben (1 nM/l) or the micro OR antagonist CTAP (100 nM/l) for 25 minutes before anoxia abolished the reduction of cell death and LDH release afforded by CNH. The antagonist of delta(1) OR BNTX (1 nM/l) or the kappa OR antagonist nor-binaltorphimine (3 nM/l) did not influence the cytoprotective effects of CNH. Taken together, the cytoprotective effect of CNH is associated with the activation of the delta(2) and micro OR localized on cardiomyocytes.


2017 ◽  
Vol 24 (7) ◽  
pp. 785-786 ◽  
Author(s):  
Ying Li ◽  
Junying Yuan
Keyword(s):  

2018 ◽  
Vol 48 (4) ◽  
pp. 1638-1651 ◽  
Author(s):  
Franziska Wittmann ◽  
Adrian Türkcan ◽  
Ulrike Baranyi ◽  
Eva Eichmair ◽  
Günther Laufer ◽  
...  

Background/Aims: Clinical studies have reported a better outcome of smokers after myocardial infarction compared to non-smokers. The data are controversial, as some clinical studies did not observe this effect. The cell biological processes involved, which might account for a ‘Smoker’s Paradox’, have not been investigated yet. Therefore, the aim was to elucidate the effect of cigarette smoke on the viability of cardiomyocytes in the context of hypoxia and reperfusion. Methods: HL-1 cells were incubated with different concentrations of cigarette smoke extract (CSE) and subjected to hypoxia/reperfusion to further evaluate influence of CSE on viability of HL-1 cells using flow cytometry analyses, Western Blot and immunofluorescence staining. Results: Incubation with CSE led to a concentration-dependent reduction in HL-1 viability. Adding hypoxia as a stressor enhanced cell death. Caspase-independent apoptosis was the observed type of cell death partly induced by P53 and apoptosis-inducing-factor. Yet a significant increase in LDH release in cardiomyocytes incubated with 4%, 8% and 16% CSE suggests necrosis with rapid DNA depletion. Interestingly, after hypoxia a decreased LDH release under lower CSE concentrations was observed. Moreover, a concentration-dependent increase in proliferation and a trend for increased ATP availability under hypoxic conditions was shown. Conclusions: The trend for less LDH release in hypoxia after low-level CSE incubation might represent a switch from necrosis to apoptosis, which in combination with the increase in metabolic activity and ATP availability might account for the ‘Smoker’s Paradox’. These findings could partly explain inconsistent results of previous clinical studies as the data showed strong evidence for the crucial relevance of the amount of cigarettes smoked. We are in need of future studies distinguishing between different types of smokers to finally verify or falsify the ‘Smoker’s Paradox’.


2017 ◽  
Vol 39 (2) ◽  
pp. 97-102 ◽  
Author(s):  
V. V. Goncharuk ◽  
A. V. Syroeshkin ◽  
I. A. Zlatskiy ◽  
E. V. Uspenskaya ◽  
A. V. Orekhova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document