Quantification of the impact of traffic incidents on speed reduction: A causal inference based approach

2021 ◽  
Vol 157 ◽  
pp. 106163
Author(s):  
Danni Cao ◽  
Jianjun Wu ◽  
Xianlei Dong ◽  
Huijun Sun ◽  
Xiaobo Qu ◽  
...  
2018 ◽  
Vol 231 ◽  
pp. 01008
Author(s):  
Eliza Ciszewska-Kulwińska ◽  
Aleksandra Romanowska ◽  
Wojciech Kustra

Traffic incidents occurring on motorways or express roads cause disruptions and deteriorate traffic conditions. The impact will differ depending on the type of incident, its duration and space blocked on the roadway and can be measured with e.g. average speed reduction, extension of travel time, time lost or overall costs of traffic disruptions. The aim of the paper is to analyse this impact, based on data from the Tri-City Ring Road (Poland). The analyses were conducted on a macroscopic level, with the use of a simulation software FREEVAL. The analysed road section was divided into homogeneous basic, merge and diverge segments. Particular traffic disturbances were introduced into individual segments, in order to represent a traffic accident or short-term road works leading to a blocked shoulder, closure of 1 lane or 2 lanes for the duration of 15 to 60 minutes. The total of 150 scenarios were analysed. The results of the analyses helped to assess how travel time and vehicle speed change depending on the location, type and duration of the traffic incident. It was found, for example, that in the case of right shoulder blockage, travel time will not change significantly (up to 3%) while the closing of 1 of 2 or 2 of 3 lanes will cause significant travel time extension (by over 500%).


2021 ◽  
Vol 13 (10) ◽  
pp. 5688
Author(s):  
Jangyoul You ◽  
Kipyo You ◽  
Minwoo Park ◽  
Changhee Lee

In this paper, the air flow characteristics and the impact of wind power generators were analyzed according to the porosity and height of the parapet installed in the rooftop layer. The wind speed at the top was decreasing as the parapet was installed. However, the wind speed reduction effect was decreasing as the porosity rate increased. In addition, the increase in porosity significantly reduced turbulence intensity and reduced it by up to 40% compared to no railing. In the case of parapets with sufficient porosity, the effect of reducing turbulence intensity was also increased as the height increased. Therefore, it was confirmed that sufficient parapet height and high porosity reduce the effect of reducing wind speed by parapets and significantly reducing the turbulence intensity, which can provide homogeneous wind speed during installation of wind power generators.


Author(s):  
Ali Kamyab ◽  
Steve Andrle ◽  
Dennis Kroeger ◽  
David S. Heyer

Many Minnesota counties are faced with the problem of high vehicle speeds through towns or resort areas that have significant pedestrian traffic. The impact of speed reduction strategies in high-pedestrian areas in rural counties of Minnesota was investigated. Speed data were collected at two selected study sites under their existing conditions ("no-treatment" or "before" condition) and after the proposed speed reduction strategies were installed. Second "after" data conditions were collected to study the short-term and long-term impact of the implemented strategies. The traffic-calming techniques employed at the Twin Lakes site consisted of removable pedestrian islands and pedestrian crossing signs. A dynamic variable message sign that sent a single-word message ("Slow") to motorists traveling over the speed limit was installed at the Bemidji site. The research study shows that the traffic-calming strategy deployed in Twin Lakes was effective in significantly reducing the mean speed and improving speed limit compliance in both the short term and long term. Despite proven effectiveness, the deployed speed reduction treatment in Bemidji Lake failed to lower the speed at the study site. The single-word message on the sign and the location of the sign, as well as a lack of initial enforcement, were the primary reasons for such failure.


2021 ◽  
Author(s):  
Rohan Sakhardande ◽  
Deepak Devegowda

Abstract The analyses of parent-child well performance is a complex problem depending on the interplay between timing, completion design, formation properties, direct frac-hits and well spacing. Assessing the impact of well spacing on parent or child well performance is therefore challenging. A naïve approach that is purely observational does not control for completion design or formation properties and can compromise well spacing decisions and economics and perhaps, lead to non-intuitive results. By using concepts from causal inference in randomized clinical trials, we quantify the impact of well spacing decisions on parent and child well performance. The fundamental concept behind causal inference is that causality facilitates prediction; but being able to predict does not imply causality because of association between the variables. In this study, we work with a large dataset of over 3000 wells in a large oil-bearing province in Texas. The dataset includes several covariates such as completion design (proppant/fluid volumes, frac-stages, lateral length, cluster spacing, clusters/stage and others) and formation properties (mechanical and petrophysical properties) as well as downhole location. We evaluate the impact of well spacing on 6-month and 1-year cumulative oil in four groups associated with different ranges of parent-child spacing. By assessing the statistical balance between the covariates for both parent and child well groups (controlling for completion and formation properties), we estimate the causal impact of well spacing on parent and child well performance. We compare our analyses with the routine naïve approach that gives non-intuitive results. In each of the four groups associated with different ranges of parent-child well spacing, the causal workflow quantifies the production loss associated with the parent and child well. This degradation in performance is seen to decrease with increasing well spacing and we provide an optimal well spacing value for this specific multi-bench unconventional play that has been validated in the field. The naïve analyses based on simply assessing association or correlation, on the contrary, shows increasing child well degradation for increasing well spacing, which is simply not supported by the data. The routinely applied correlative analyses between the outcome (cumulative oil) and predictors (well spacing) fails simply because it does not control for variations in completion design over the years, nor does it account for variations in the formation properties. To our knowledge, there is no other paper in petroleum engineering literature that speaks of causal inference. This is a fundamental precept in medicine to assess drug efficacy by controlling for age, sex, habits and other covariates. The same workflow can easily be generalized to assess well spacing decisions and parent-child well performance across multi-generational completion designs and spatially variant formation properties.


AJIL Unbound ◽  
2021 ◽  
Vol 115 ◽  
pp. 389-393
Author(s):  
Benjamin J. Appel

Sara Mitchell and Andrew Owsiak's examination of the impact of UN Convention on the Law of the Sea (UNCLOS) and Article 287 declarations on the peaceful resolution of maritime disputes significantly advances the literature on the relationship between international law/international courts and maritime issues. To their credit, the authors employ a wide range of empirical tests in the article to provide readers with confidence in the empirical results. Nonetheless, there are some important limitations in their approach. Drawing on insights from the causal inference literature, I argue that Mitchell and Owsiak's empirical analyses suffer from two biases that both (1) raise concerns about the causal relationships identified in the article, and (2) suggest some important scope conditions in its empirical findings. I investigate the biases and propose suggestions for legal scholarship to produce more credible results.


2019 ◽  
Vol 188 (9) ◽  
pp. 1682-1685 ◽  
Author(s):  
Hailey R Banack

Abstract Authors aiming to estimate causal effects from observational data frequently discuss 3 fundamental identifiability assumptions for causal inference: exchangeability, consistency, and positivity. However, too often, studies fail to acknowledge the importance of measurement bias in causal inference. In the presence of measurement bias, the aforementioned identifiability conditions are not sufficient to estimate a causal effect. The most fundamental requirement for estimating a causal effect is knowing who is truly exposed and unexposed. In this issue of the Journal, Caniglia et al. (Am J Epidemiol. 2019;000(00):000–000) present a thorough discussion of methodological challenges when estimating causal effects in the context of research on distance to obstetrical care. Their article highlights empirical strategies for examining nonexchangeability due to unmeasured confounding and selection bias and potential violations of the consistency assumption. In addition to the important considerations outlined by Caniglia et al., authors interested in estimating causal effects from observational data should also consider implementing quantitative strategies to examine the impact of misclassification. The objective of this commentary is to emphasize that you can’t drive a car with only three wheels, and you also cannot estimate a causal effect in the presence of exposure misclassification bias.


2002 ◽  
Vol 42 (6) ◽  
pp. 665 ◽  
Author(s):  
H. A. Cleugh

While there has been considerable research into airflow around windbreaks, the interaction of this airflow with the exchanges of heat and water vapour has received far less attention. Yet, the effects of windbreaks on microclimates, water use and agricultural productivity depend, in part, on this interaction. A field and wind tunnel experimental program was conducted to quantify the effects of windbreaks on microclimates and evaporation fluxes. This paper describes the field measurements, which were conducted over a 6-week period at a tree windbreak site located in undulating terrain in south-east Australia. The expected features of airflow around porous windbreaks were observed despite the less than ideal nature of the site. As predicted from theory, the air temperature and humidity were elevated, by day, in the quiet zone and the location of the peak increase in temperature and humidity coincided with the location of the minimum wind speed. However, this increase in temperature and humidity was small in size and restricted to the zone within 10 windbreak heights (H) of the windbreak. This pattern contrasts with that for the near surface wind speeds, which were reduced by up to 80% in a sheltered zone that extended from 5 H upwind to over 25 H downwind of the windbreak. Similar differences were found between the turbulent scalar (heat, water vapour) and velocity terms. While both are reduced in the quiet zone, the turbulent scalar terms near the surface were substantially enhanced at the location where the wake zone begins. Here the mean wind speed is reduced by 50% and the turbulent velocity terms return to their upwind values. Wind speed reductions varied linearly with [cos (90 – α)], where α is the incident angle of the wind, for sites located 6 H downwind. This means that the spatial pattern of wind speed reduction applies to all wind directions, provided that distance downwind is expressed in terms of streamwise distance. However, shelter in the near-break region is slightly increased as the wind blows more obliquely towards the windbreak. The atmospheric demand in the quiet zone was reduced when the humidity of the upwind air was low. In such conditions, windbreaks can 'protect' growing crops from the impact of dry air with high atmospheric demand. The corollary is that in humid conditions, the atmospheric demand in the quiet zone can be increased as a result of shelter.


Sign in / Sign up

Export Citation Format

Share Document