scholarly journals Effect of faba bean (Vicia faba L.)–rhizobia symbiosis on barley's growth, phosphorus uptake and acid phosphatase activity in the intercropping system

2018 ◽  
Vol 16 (3) ◽  
pp. 297-303 ◽  
Author(s):  
Mohammed Mouradi ◽  
Mohamed Farissi ◽  
Bouchra Makoudi ◽  
Abdelaziz Bouizgaren ◽  
Cherki Ghoulam
2016 ◽  
Vol 67 (8) ◽  
pp. 847 ◽  
Author(s):  
Haitao Liu ◽  
Philip J. White ◽  
Chunjian Li

Maize (Zea mays L.) and faba bean (Vicia faba L.) have contrasting responses to low phosphorus (P) supply. The aim of this work was to characterise these responses with respect to the partitioning of biomass between shoot and root and biochemical modification of the rhizosphere. Maize and faba bean were grown in rhizoboxes in soil with a low P (10 mg kg–1) or high P (150 mg kg–1) supply. Solutions were collected from rhizosphere and bulk soil by suction, using micro-rhizons in situ. The pH and water-soluble P (Pi) were determined on the solutions collected by using micro-rhizons. Olsen P, soil pH and acid phosphatase activity were determined on samples of rhizosphere and bulk soil. Organic acids released from root tips were collected non-destructively and analysed by high performance liquid chromatography. Plants grown with low P supply had higher ratios of root : shoot dry weight than plants grown with high P supply. This response was greater in maize than in faba bean. Rhizosphere acidification, organic acid concentrations and acid phosphatase activity were greater in faba bean than maize. The Pi concentration in the maize rhizosphere solution was less than in the bulk soil, but the Pi concentration in the rhizosphere solution of faba bean was greater than in the bulk soil. It was concluded that maize responded to low P supply by investing more biomass in its root system, but acidification, concentrations of organic acids, acid phosphatase activity and mobilisation of P in the rhizosphere were greater in faba bean than in maize.


Author(s):  
O. T. Minick ◽  
E. Orfei ◽  
F. Volini ◽  
G. Kent

Hemolytic anemias were produced in rats by administering phenylhydrazine or anti-erythrocytic (rooster) serum, the latter having agglutinin and hemolysin titers exceeding 1:1000.Following administration of phenylhydrazine, the erythrocytes undergo oxidative damage and are removed from the circulation by the cells of the reticulo-endothelial system, predominantly by the spleen. With increasing dosage or if animals are splenectomized, the Kupffer cells become an important site of sequestration and are greatly hypertrophied. Whole red cells are the most common type engulfed; they are broken down in digestive vacuoles, as shown by the presence of acid phosphatase activity (Fig. 1). Heinz body material and membranes persist longer than native hemoglobin. With larger doses of phenylhydrazine, erythrocytes undergo intravascular fragmentation, and the particles phagocytized are now mainly red cell fragments of varying sizes (Fig. 2).


2016 ◽  
Vol 3 (3) ◽  
Author(s):  
Anil Kumar Singh ◽  
Rashmi Yadav ◽  
M.K. Meena ◽  
Y.J. Khan

Faba bean (Vicia faba L.) maintain third place with respect to area and production among legume. Its unique ability to excel under all most all type of climatic conditions, it is one of the best performing crops under changing climate scenario. Its soil fertility augmenting potential and their performance was evaluated for two years with 73 accessions collected from Bihar. This study provides glimpses of scope and magnitude of soil fertility improving potential of faba bean (Vicia faba L.)


Crop Science ◽  
2021 ◽  
Author(s):  
Lynn Abou Khater ◽  
Fouad Maalouf ◽  
Somanagouda B. Patil ◽  
Rind Balech ◽  
Diana Nacouzi ◽  
...  
Keyword(s):  

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 173
Author(s):  
Abeer F. Desouky ◽  
Ahmed H. Ahmed ◽  
Hartmut Stützel ◽  
Hans-Jörg Jacobsen ◽  
Yi-Chen Pao ◽  
...  

Pathogenesis-related (PR) proteins are known to play relevant roles in plant defense against biotic and abiotic stresses. In the present study, we characterize the response of transgenic faba bean (Vicia faba L.) plants encoding a PR10a gene from potato (Solanum tuberosum L.) to salinity and drought. The transgene was under the mannopine synthetase (pMAS) promoter. PR10a-overexpressing faba bean plants showed better growth than the wild-type plants after 14 days of drought stress and 30 days of salt stress under hydroponic growth conditions. After removing the stress, the PR10a-plants returned to a normal state, while the wild-type plants could not be restored. Most importantly, there was no phenotypic difference between transgenic and non-transgenic faba bean plants under well-watered conditions. Evaluation of physiological parameters during salt stress showed lower Na+-content in the leaves of the transgenic plants, which would reduce the toxic effect. In addition, PR10a-plants were able to maintain vegetative growth and experienced fewer photosystem changes under both stresses and a lower level of osmotic stress injury under salt stress compared to wild-type plants. Taken together, our findings suggest that the PR10a gene from potato plays an important role in abiotic stress tolerance, probably by activation of stress-related physiological processes.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 547
Author(s):  
Arafat Abdel Hamed Abdel Latef ◽  
Md. Tahjib-Ul-Arif ◽  
Mohammad Saidur Rhaman

Auxin not only controls the development processes, but also regulates the stress responses of plants. In this investigation, we explored the potential roles of exogenously applied indole-3-acetic acid (IAA) in conferring salt tolerance in the faba bean (Vicia faba L.). Our results showed that foliar application of IAA (200 ppm) to salt-exposed (60 mM and 150 mM NaCl) plants promoted growth, which was evidenced by enhanced root–stem traits. IAA application ensured better osmotic protection in salt-stressed plants which was supported by reduced proline and enhanced soluble sugar, soluble protein, and total free amino acid contents in the roots, stem, and seeds. IAA application also increased the number of nodules in salt-stressed plants, which may facilitate better nitrogen assimilation. Moreover, IAA mediated improvements in mineral homeostasis (K+, Ca2+, and Mg2+) and the translocation of Na+, while it also inhibited excessive accumulation of Na+ in the roots. Salt-induced oxidative damage resulted in increased accumulation of malondialdehyde, whereas IAA spraying relegated malondialdehyde by improving antioxidant enzymes, including superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase. Together, these results together with a principal component analysis uncovered that foliar spraying of IAA alleviated the antagonistic effects of salt stress via enhancing osmolyte accumulation, ionic homeostasis, and antioxidant activity. Finally, exogenous IAA enhanced the yield of broad beans under high salinity conditions.


Sign in / Sign up

Export Citation Format

Share Document