scholarly journals Response of Nitrogen Content for Some Varieties of Kenaf Fiber (Hibiscus Cannabinus L.) by Applying Different Levels of Potassium, Boron and Zinc

2014 ◽  
Vol 2 ◽  
pp. 375-380
Author(s):  
Rabar Fatah Salih ◽  
Khalina Abdan ◽  
Aimrun Wayayok ◽  
Anuar Abdul Rahim ◽  
Norhashila Hashim
2013 ◽  
Vol 315 ◽  
pp. 443-447 ◽  
Author(s):  
S.K.A. Saferi ◽  
Y. Yusof

As demand for clean and healthy environment, people make many alternate solutions to save the environment. To save trees and overcome landfill of waste material and waste disposal by burning activities issues (cause to losing energy and increase pollution), people nowadays take recycling as a recovery. Recycling waste paper into new product increased over the years. Shortage of wood supply required new sources of natural fiber for papermaking industry. Many researchers have studied new sources of natural fibers from non wood materials, such as oil palm residues, kenaf (Hibiscus Cannabinus), pineapple leaf, banana, and coconut fiber. Kenaf is choose as reinforcement agent for recycled waste paper to maximize the use of kenaf in industry application due its wide range of advantages where pineapple leaf are choose as reinforcement agent because abundantly of these material in Malaysia. Reinforcement of natural fiber into waste paper during recycling process expected to increased strength properties of final product. To understand the right and suitable processing method for kenaf fiber and pineapple leaf leaves previous work from other researchers are studied to investigate pulping procedure of natural fiber and its effect on mechanical strength.


2019 ◽  
Vol 11 (4) ◽  
pp. 311-316
Author(s):  
L. Nenova ◽  
M. Benkova ◽  
Ts. Simeonova ◽  
I. Atanassova

Abstract. The aim of the study was to assess the influence of different fertilizer doses on the content of macroelements (nitrogen, phosphorus and potassium) in dry biomass and grain of maize during the 2016 – 2018 period. A field experiment with fertilization of maize was carried out on Alluvial-meadow soil (Fluvisol) in the region of Tsalapitsa village, near Plovdiv. Three variants of mineral fertilization were studied V2 (N15P10K0), V3 (N20P15K0) and V4 (N25P20K0), and a control variant V1 (N0P0K0) – without fertilization. It was established that N% content in maize dry biomass was affected significantly by the variants of fertilization (18% of the variance). Significant differences (P≤0.05) between the control variant and all the variants of fertilization were established. Increasing the fertilizer dose, nitrogen content in dry biomass increased, too. The highest was the average content of nitrogen in maize leaves (0.94%), followed by the cobs (0.71%) and the lowest was the content in the stems (0.58%). Phosphorus and potassium content of dry biomass were affected significantly by the year of the study (10% and 9% of the variance, respectively). At the 7-8th leaf growth stage of maize, the highest nutrients content (N, P, K) in dry biomass were reported. With aging of plants the nutrient content in their biomass decreased. Nitrogen, phosphorus and potassium content in maize grain was significantly affected by the year of the experiment. Mineral fertilization had impact mostly on the nitrogen content of the grain, which was the highest in V3 variant, accepted as optimal – 0.66% on average.


2011 ◽  
Vol 264-265 ◽  
pp. 743-747 ◽  
Author(s):  
Hazleen Anuar ◽  
N.A. Hassan ◽  
F. Mohd Fauzey

Thermoplastic Elastomer (TPE) composite reinforced with Hibiscus cannabinus, L fiber (kenaf fiber, KF) was prepared via melt blending method using internal mixer at temperature 180°C, screw rotational speed at 40rpm for 10 min. TPE matrix is a blend of polypropylene (PP) and ethylene-propylene-diene monomer (EPDM) at a ratio of 70:30. The optimum fiber loading were investigated from 0% to 20% by volume. The effect of coupling agent maleic anhydride polypropylene (MAPP) on the TPE composite has been investigated. The result shown that, with increasing the kenaf fiber content gradually increased the tensile strength and flexural strength for both treated and untreated PP/EPDM-KF composite. However, at 20% of kenaf fiber loading, it showed decreasing in impact strength due to brittleness of the samples. From the scanning electron micrograph (SEM) it has shown that the composite, with compatibilizer promotes better interaction between TPE and kenaf fiber.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 647g-647
Author(s):  
Brad B. Hawcroft ◽  
Steven E. Newman

Kenaf is an alternative fiber crop being evaluated in Mississippi. Kenaf, primarily grown in Asia, can be used in the manufacture of paper, fiber board, acoustical tiles and compost. The bark is the source of the fiber used, leaving the fiber core or pith for use as a paper additive, poultry litter, or is discarded. The objective of this study was to evaluate the potential use of kenaf fiber core as a vermiculite substitute in a sphagnum peat moss-based medium. Plugs of Celosia argentea, Viola × wittrockiana, and Impatiens wallerana were transplanted into 10 cm pots containing 5 different sphagnum peat moss-based media modified with the milled fiber core (pith) of kenaf (Hibiscus cannabinus) and/or vermiculite. The media were as follows: 5 peat: 0 kenaf : 5 vermiculite (v/v/v); 5 peat : 1 kenaf : 4 vermiculite (v/v/v); 5 peat : 2 kenaf : 3 vermiculite (v/v/v); 5 peat : 3 kenaf : 2 vermiculite (v/v/v); 5 peat : 4 kenaf : 1 vermiculite (v/v/v); and 5 peat : 5 kenaf: 0 vermiculite (v/v/v). Water holding capacity, pore space, pH and media shrinkage were monitored throughout the study along with plant growth and plant quality.


2019 ◽  
Vol 54 (15) ◽  
pp. 2065-2071 ◽  
Author(s):  
M Subbir Parvej ◽  
Xinnan Wang ◽  
Joseph Fehrenbach ◽  
Chad A Ulven

Kenaf ( Hibiscus cannabinus L.) fiber is being extensively used as a reinforcement material in composites due to its excellent mechanical properties. To use this fiber more efficiently, it is necessary to understand its mechanical properties at micro/nano meter scale. Despite the evidence of some past studies to determine the elastic modulus of kenaf fiber, most of them were performed on fiber bundles. Bundle-based method to find the elastic moduli has some obvious issues of foreign materials being present, incorrect gauge length, and sample diameter due to void spaces. These issues pose as obvious hurdles to determine the elastic modulus accurately. In this study, individual kenaf micro fiber was used to find elastic modulus in the radial direction. The radial elastic modulus of the fiber was characterized by atomic force microscopy-based nanoindentation. To determine the radial elastic modulus from the force versus sample deformation data, the extended Johnson–Kendall–Roberts model was used which considered adhesion force from the fiber surface. The radial elastic modulus of the kenaf fiber was found to be 2.3 GPa.


1969 ◽  
Vol 5 (2) ◽  
pp. 111-116 ◽  
Author(s):  
O. L. Oke

SummaryApplication of S, alone or in combination with P, significantly increased the number, yield and nitrogen content of root nodules on pigeon pea and guar. Sulphur, applied at different levels with NPK, increased the methionine content and yield of plants significantly but had no significant effect on the N content. Sulphur at 20 p.p.m., alone or in combination with P, increased the methionine content of pigeon pea significantly but the effect decreased at higher levels of S. In general, higher values of methionine were obtained in the presence of S than when it was absent.


2018 ◽  
Vol 14 (4) ◽  
pp. 397-402 ◽  
Author(s):  
Tijjani Abdullahi ◽  
Zawati Harun ◽  
Mohd Hafiz Dzarfan Othman ◽  
Nasiru Aminu ◽  
Oguntunde Gabriel ◽  
...  

The study of the kenaf core fiber – polymer composites was done by preparing a kenaf/polymer composite using polypropylene (PP) polymer matrix and Scona TPPP 9012 GA as coupling agent with Nigerian grown Kenaf natural fiber through hot pressing. The objective was to characterize the stability and bond strength of the polymer/fiber interface through morphological analysis by using Scanning Electron Microscopy (SEM) as well as the characterization of thermal and mechanical properties of the composite. The result obtained shows an increment in tensile strength as a percentage of kenaf fiber increased to 30%, this trend continuous surprisingly, even at 50% kenaf fiber loading, which goes against the result obtained in previous literature. Thus, signifying the positive influence of Scona TPPP 9012 GA coupling agent. However, further analysis indicated that 40% kenaf fiber loading has a better chance to be considered suitable for use in the automotive structure.


2012 ◽  
Vol 626 ◽  
pp. 485-489 ◽  
Author(s):  
Aimi Munirah Jalilluddin ◽  
Seti Mariam Ayop ◽  
Kartini Kamaruddin

Mechanical means of ventilation and air-conditioning system in Malaysian buildings are used continuously to provide and maintain the comfort of indoor environment to the occupants of the buildings. It was found that the system used led to higher rate of energy consumption. Hence, development of masonry units with high thermal insulation properties is a necessity. This paper represented the study on the thermal conductivity and the density of sand-cement blocks incorporated with different proportions of kenaf (Hibiscus cannabinus L.) fiber as additive. The amount of kenaf fiber inclusions were the main focus to observe the achievement of best results for both properties. It was found that kenaf fiber content had an advantage to reduce the self-weight of blocks whilst reducing the thermal conductivity property. Hence, it can be seen that there is a potential in developing masonry units for single wall components in Malaysian buildings with lightweight features and thermal insulator properties.


Sign in / Sign up

Export Citation Format

Share Document