Fast and cost-effective preparation of plant cells for scanning electron microscopy (SEM) analysis

2020 ◽  
Vol 609 ◽  
pp. 113920
Author(s):  
Setareh Golinejad ◽  
Mohammad Hossein Mirjalili
Author(s):  
M.E. Lee ◽  
A. Moller ◽  
P.S.O. Fouche ◽  
I.G Gaigher

Scanning electron microscopy of fish scales has facilitated the application of micro-structures to systematics. Electron microscopy studies have added more information on the structure of the scale and the associated cells, many problems still remain unsolved, because of our incomplete knowledge of the process of calcification. One of the main purposes of these studies has been to study the histology, histochemistry, and ultrastructure of both calcified and decalcified scales, and associated cells, and to obtain more information on the mechanism of calcification in the scales. The study of a calcified scale with the electron microscope is complicated by the difficulty in sectioning this material because of the close association of very hard tissue with very soft tissues. Sections often shatter and blemishes are difficult to avoid. Therefore the aim of this study is firstly to develop techniques for the preparation of cross sections of fish scales for scanning electron microscopy and secondly the application of these techniques for the determination of the structures and calcification of fish scales.


Author(s):  
M. Yamada ◽  
K. Ueda ◽  
K. Kuboki ◽  
H. Matsushima ◽  
S. Joens

Use of variable Pressure SEMs is spreading among electron microscopists The variable Pressure SEM does not necessarily require specimen Preparation such as fixation, dehydration, coating, etc which have been required for conventional scanning electron microscopy. The variable Pressure SEM allows operating Pressure of 1˜270 Pa in specimen chamber It does not allow microscopy of water-containing specimens under a saturated vapor Pressure of water. Therefore, it may cause shrink or deformation of water-containing soft specimens such as plant cells due to evaporation of water. A solution to this Problem is to lower the specimen temperature and maintain saturated vapor Pressures of water at low as shown in Fig. 1 On this technique, there is a Published report of experiment to have sufficient signal to noise ratio for scondary electron imaging at a relatively long working distance using an environmental SEM. We report here a new low temperature microscopy of soft Plant cells using a variable Pressure SEM (Hitachi S-225ON).


2020 ◽  
Vol 861 ◽  
pp. 378-382
Author(s):  
Sophoan Phal ◽  
Muhammad Rafiullah Khan ◽  
Pattarin Leelaphiwat ◽  
Vanee Chonhenchob

Sodium alginate based films containing turmeric oil (TEO) at different concentrations (1, 2 and 3%) were developed. The film with no TEO was used as control. Incorporation of TEO had the effects on the film properties. With increasing TEO concentrations, thickness, elongation at break, permeability of oxygen and water vapor of the films significantly (p ≤ 0.05) increased. Whereas moisture content, tensile strength and modulus of elasticity significantly (p ≤ 0.05) decreased. Scanning electron microscopy (SEM) analysis showed more numerous pores and rougher surface of the antifungal films than the control film.


1979 ◽  
Vol 16 (8) ◽  
pp. 1621-1628 ◽  
Author(s):  
Donald E. Champagne ◽  
C. R. Harington ◽  
Don E. McAllister

A nodule containing the cranium of a deepwater sculpin, Myoxocephalus thompsoni (Girard), was discovered in Pleistocene Champlain Sea deposits at Green Creek, 10 km east of Ottawa, Ontario, Canada, and represents the first fossil reported for the species. It provides an additional basis for refuting derivation of the species from a post-Wisconsin marine submergence and suggests an origin at the beginning of the Wisconsin or earlier. Habitat preferences of the species favour an oligotrophic lacustrine environment with bottom summer temperatures below 8 °C in the Champlain Sea or nearby lake basin. The head length of the fossil is 28 mm, the estimated standard length 86 mm. Use of a longwave ultraviolet lamp with the fossil improved contrast between the bones and the clay matrix in photographs. Scanning electron microscopy (SEM) analysis of bone in the fossil failed to detect the presence of strontium.


1985 ◽  
Vol 63 (12) ◽  
pp. 2357-2363 ◽  
Author(s):  
M. J. C. Rhodes ◽  
R. J. Robins ◽  
R. J. Turner ◽  
J. I. Smith

The surface features of plant cells immobilised in a matrix of either reticulated polyurethane foam or nylon fibre have been examined with the scanning electron microscope. It has been found that both cells and matrix are enveloped in a thin film, the appearance of which is very dependent on the method by which material is prepared for scanning electron microscopy. The structure is severely damaged by fixation and dehydration. Only in specimens examined in the frozen hydrated state is a structure seen compatible with that observed with the light microscope. From the way the appearance of the film is affected by different methods of preparation for the scanning electron microscope, it is suggested that the film is a hydrated mucilage. The importance of this film for the retention of cells within the matrix is discussed.


1989 ◽  
Vol 153 ◽  
Author(s):  
D. Feldman ◽  
M.A. Lacasse

AbstractThe morphology of blended polyurethane (PU) sealants was studied by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The PU was modifided by mechanical mixing with various amounts of Lignin (L) to achieve a homogeneous blend. Specimens were subjected to control (C), accelerated weathering (AW), and natural weathering (NW) conditions. Results obtained from SEM analysis reveal an even distribution of L particles in the PU matrix. Furthermore, the SEM photomicrographs clearly emphasize the differing morphologies of the constituent phases. They also depict the differences in surface texture between control and aged specimens. The DSC analysis shows that the two phases are immiscible which is in agreement with observations by microscopy.


Sign in / Sign up

Export Citation Format

Share Document