Visual detection of cyclobutane pyrimidine dimer DNA damage lesions by Hg 2+ and carbon dots

2018 ◽  
Vol 1016 ◽  
pp. 49-58 ◽  
Author(s):  
Seema Singh ◽  
Manoj K. Singh ◽  
Prolay Das
2021 ◽  
Vol 22 (11) ◽  
pp. 5608
Author(s):  
Markéta Havrdová ◽  
Iztok Urbančič ◽  
Kateřina Bartoň Tománková ◽  
Lukáš Malina ◽  
Janez Štrancar ◽  
...  

It is important to understand the nanomaterials intracellular trafficking and distribution and investigate their targeting into the nuclear area in the living cells. In our previous study, we firstly observed penetration of nonmodified positively charged carbon dots decorated with quaternary ammonium groups (QCDs) into the nucleus of mouse NIH/3T3 fibroblasts. Thus, in this work, we focused on deeper study of QCDs distribution inside two healthy mouse NIH/3T3 and L929 cell lines by fluorescence microspectroscopy and performed a comprehensive cytotoxic and DNA damage measurements. Real-time penetration of QCDs across the plasma cell membrane was recorded, concentration dependent uptake was determined and endocytic pathways were characterized. We found out that the QCDs concentration of 200 µg/mL is close to saturation and subsequently, NIH/3T3 had a different cell cycle profile, however, no significant changes in viability (not even in the case with QCDs in the nuclei) and DNA damage. In the case of L929, the presence of QCDs in the nucleus evoked a cellular death. Intranuclear environment of NIH/3T3 cells affected fluorescent properties of QCDs and evoked fluorescence blue shifts. Studying the intracellular interactions with CDs is essential for development of future applications such as DNA sensing, because CDs as DNA probes have not yet been developed.


2017 ◽  
Vol 23 (60) ◽  
pp. 15177-15188 ◽  
Author(s):  
Irene Conti ◽  
Lara Martínez-Fernández ◽  
Luciana Esposito ◽  
Siegfried Hofinger ◽  
Artur Nenov ◽  
...  

2004 ◽  
Vol 320 (4) ◽  
pp. 1133-1138 ◽  
Author(s):  
Joan Seah Mei Kwei ◽  
Isao Kuraoka ◽  
Katsuyoshi Horibata ◽  
Manabu Ubukata ◽  
Eiry Kobatake ◽  
...  

2001 ◽  
Vol 204 (1) ◽  
pp. 157-164 ◽  
Author(s):  
M.P. Lesser ◽  
J.H. Farrell ◽  
C.W. Walker

Decreases in stratospheric ozone levels from anthropogenic inputs of chlorinated fluorocarbons have resulted in an increased amount of harmful ultraviolet-B (UVB, 290–320 nm) radiation reaching the sea surface in temperate latitudes (30–50 degrees N). In the Gulf of Maine, present-day irradiances of ultraviolet-A (UVA, 320–400 nm) radiation can penetrate to depths of 23 m and UVB radiation can penetrate to depths of 7–12 m, where the rapidly developing embryos and larvae of the Atlantic cod (Gadus morhua) are known to occur. Laboratory exposures of embryos and larvae of Atlantic cod to ultraviolet radiation (UVR) equivalent to a depth of approximately 10 m in the Gulf of Maine resulted in significant mortality of developing embryos and a decrease in standard length at hatching for yolk-sac larvae. Larvae at the end of the experimental period also had lower concentrations of UVR-absorbing compounds and exhibited significantly greater damage to their DNA, measured as cyclobutane pyrimidine dimer formation, after exposure to UVB radiation. Larvae exposed to UVB radiation also exhibited significantly higher activities and protein concentrations of the antioxidant enzyme superoxide dismutase and significantly higher concentrations of the transcriptional activator p53. p53 is expressed in response to DNA damage and can result in cellular growth arrest in the G1- to S-phase of the cell cycle or to programmed cell death (apoptosis). Cellular death caused by apoptosis is the most likely cause of mortality in embryos and larvae in these laboratory experiments, while the smaller size at hatching in those larvae that survived is caused by permanent cellular growth arrest in response to DNA damage. In addition, the sub-lethal energetic costs of repairing DNA damage or responding to oxidative stress may also contribute to poor individual performance in surviving larvae that could also lead to increases in mortality. The irradiances of UVB radiation that elicit these responses in cod larvae can occur in many temperate latitudes, where these ecologically and commercially important fish are known to spawn, and may contribute to the high mortality of cod embryos and larvae in their natural environment.


Sign in / Sign up

Export Citation Format

Share Document