Impact of an Aortic Nitinol Stent Graft on Flow Measurements by Time-resolved Three-dimensional Velocity-encoded MRI

2012 ◽  
Vol 19 (3) ◽  
pp. 274-280 ◽  
Author(s):  
Fabian Rengier ◽  
Michael Delles ◽  
Roland Unterhinninghofen ◽  
Sebastian Ley ◽  
Sasan Partovi ◽  
...  
2011 ◽  
Vol 80 (1) ◽  
pp. 163-167 ◽  
Author(s):  
Fabian Rengier ◽  
Michael Delles ◽  
Tim Frederik Weber ◽  
Dittmar Böckler ◽  
Sebastian Ley ◽  
...  

Author(s):  
A. Pfau ◽  
J. Schlienger ◽  
A. I. Kalfas ◽  
R. S. Abhari

This paper introduces the new fast response aerodynamic probe, which was recently developed at the ETH Zurich. The technique provides time-resolved, three-dimensional flow measurements using the virtual four sensor technique. The concept and the evaluation of the virtual four sensor probe is discussed in detail. The basic results consist of yaw and pitch flow angles as well as the total and static pressure. They combine to form the unsteady, three dimensional flow vector. The outer diameter of the cylindrical probe head was miniaturized to 0.84mm, hence probe blockage effects as well as dynamic lift effects are reduced. The shape of the probe head was optimized in view of the manufacturing process as well as aerodynamic considerations. The optimum geometry for pitch sensitivity was found to be a cylindrical surface with the axis perpendicular to the probe shaft. The internal design of the probes led to a sensor cavity eigenfrequency of 44kHz for the yaw sensitive and 34kHz for the pitch sensitive probe. Data acquisition is done with a fully automated traversing system, which moves the probe within the test rig and samples the signal with a PC-based A/D-board. An error analysis implemented into the data reduction routines revealed acceptable accuracy for flow angles as well as pressures for many turbomachinery flows. Depending on the dynamic head of the application the yaw angle is accurate within ±0.35° and pitch angle within ±0.7°. In the final section, a comparison of time averaged results to five hole probe measurements is discussed. The advantages of the new probe, beside its unique smallness, are the complete unsteady kinematic information and the improved recording of unsteady total pressure measurement as it is pointed out in a comparison against a 2D virtual three sensor probe.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gordon J. Hedley ◽  
Tim Schröder ◽  
Florian Steiner ◽  
Theresa Eder ◽  
Felix J. Hofmann ◽  
...  

AbstractThe particle-like nature of light becomes evident in the photon statistics of fluorescence from single quantum systems as photon antibunching. In multichromophoric systems, exciton diffusion and subsequent annihilation occurs. These processes also yield photon antibunching but cannot be interpreted reliably. Here we develop picosecond time-resolved antibunching to identify and decode such processes. We use this method to measure the true number of chromophores on well-defined multichromophoric DNA-origami structures, and precisely determine the distance-dependent rates of annihilation between excitons. Further, this allows us to measure exciton diffusion in mesoscopic H- and J-type conjugated-polymer aggregates. We distinguish between one-dimensional intra-chain and three-dimensional inter-chain exciton diffusion at different times after excitation and determine the disorder-dependent diffusion lengths. Our method provides a powerful lens through which excitons can be studied at the single-particle level, enabling the rational design of improved excitonic probes such as ultra-bright fluorescent nanoparticles and materials for optoelectronic devices.


AIChE Journal ◽  
2012 ◽  
Vol 59 (5) ◽  
pp. 1746-1761 ◽  
Author(s):  
R. T. M. Jilisen ◽  
P. R. Bloemen ◽  
M. F. M. Speetjens

Author(s):  
John P. Clark ◽  
Richard J. Anthony ◽  
Michael K. Ooten ◽  
John M. Finnegan ◽  
P. Dean Johnson ◽  
...  

Accurate predictions of unsteady forcing on turbine blades are essential for the avoidance of high-cycle-fatigue issues during turbine engine development. Further, if one can demonstrate that predictions of unsteady interaction in a turbine are accurate, then it becomes possible to anticipate resonant-stress problems and mitigate them through aerodynamic design changes during the development cycle. A successful reduction in unsteady forcing for a transonic turbine with significant shock interactions due to downstream components is presented here. A pair of methods to reduce the unsteadiness was considered and rigorously analyzed using a three-dimensional, time resolved Reynolds-Averaged Navier Stokes (RANS) solver. The first method relied on the physics of shock reflections itself and involved altering the stacking of downstream components to achieve a bowed airfoil. The second method considered was circumferentially-asymmetric vane spacing which is well known to spread the unsteadiness due to vane-blade interaction over a range of frequencies. Both methods of forcing reduction were analyzed separately and predicted to reduce unsteady pressures on the blade as intended. Then, both design changes were implemented together in a transonic turbine experiment and successfully shown to manipulate the blade unsteadiness in keeping with the design-level predictions. This demonstration was accomplished through comparisons of measured time-resolved pressures on the turbine blade to others obtained in a baseline experiment that included neither asymmetric spacing nor bowing of the downstream vane. The measured data were further compared to rigorous post-test simulations of the complete turbine annulus including a bowed downstream vane of non-uniform pitch.


Author(s):  
Martin Lipfert ◽  
Jan Habermann ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Yavuz Guendogdu

In a joint project between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines a two-stage low pressure turbine is tested at design and strong off-design conditions. The experimental data taken in the altitude test-facility aims to study the effect of positive and negative incidence of the second stator vane. A detailed insight and understanding of the blade row interactions at these regimes is sought. Steady and time-resolved pressure measurements on the airfoil as well as inlet and outlet hot-film traverses at identical Reynolds number are performed for the midspan streamline. The results are compared with unsteady multi-stage CFD predictions. Simulations agree well with the experimental data and allow detailed insights in the time-resolved flow-field. Airfoil pressure field responses are found to increase with positve incidence whereas at negative incidence the magnitude remains unchanged. Different pressure to suction side phasing is observed for the studied regimes. The assessment of unsteady blade forces reveals that changes in unsteady lift are minor compared to changes in axial force components. These increase with increasing positive incidence. The wake-interactions are predominating the blade responses in all regimes. For the positive incidence conditions vane 1 passage vortex fluid is involved in the midspan passage interaction leading to a more distorted three-dimensional flow field.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
O. Schennach ◽  
J. Woisetschläger ◽  
B. Paradiso ◽  
G. Persico ◽  
P. Gaetani

This paper presents an experimental investigation of the flow field in a high-pressure transonic turbine with a downstream vane row (1.5 stage machine) concerning the airfoil indexing. The objective is a detailed analysis of the three-dimensional aerodynamics of the second vane for different clocking positions. To give an overview of the time-averaged flow field, five-hole probe measurements were performed upstream and downstream of the second stator. Furthermore in these planes additional unsteady measurements were carried out with laser Doppler velocimetry in order to record rotor phase-resolved velocity, flow angle, and turbulence distributions at two different clocking positions. In the planes upstream of the second vane, the time-resolved pressure field has been measured by means of a fast response aerodynamic pressure probe. This paper shows that the secondary flows of the second vane are significantly modified by the different clocking positions, in connection with the first vane modulation of the rotor secondary flows. An analysis of the performance of the second vane is also carried out, and a 0.6% variation in the second vane loss coefficient has been recorded among the different clocking positions.


1973 ◽  
Vol 12 (64) ◽  
pp. 19-44
Author(s):  
Charles F. Raymond

AbstractMethods are developed for determining the distributions of stress and effective viscosity in a glacier, under the assumptions: the ice is quasi-viscous, the flow is time independent, and acceleration forces are negligible. Measurements of the three-dimensional distribution of velocity are needed for their application. The differential equations of mechanical equilibrium, expressed in terms of viscosity, strain-rate components, mean stress, and their gradients, are viewed as equations to be solved for viscosity and mean stress subject to boundary conditions at the free upper surface. For certain rectilinear flow patterns, unique distributions of stress and effective viscosity can always be derived. For more complicated flow this is not necessarily so. However, it is still possible to choose the best values of rheological parameters in any trial flow law based on the requirement that the residuals to the equations of equilibrium be minimized in a mean-square sense. The techniques are applied to measurements of internal deformation made in nine bore holes on the Athabasca Glacier. At the center line the magnitude of the surface-parallel shear stress increases with depth more slowly than would be expected from a standard shape factor correction or the theoretical distribution of Nye. Correspondingly the lateral distribution of lateral shear stress shows the opposite relationships. In the lower one- to two-thirds of the depth corresponding to a range in effective stress from about 0.5 to 1.2 bars, the gross rheology of the ice is not distinguishably different from the experimentally determined flow law of Glen (n = 4.2, T = 0.02° C) as generalized by Nye. The results do not support the conclusion that the effective viscosity is higher than would be expected from Glen’s experiments as indicated by the more limited measurements of Paterson and Savage. Power-law parameters derived for the different bore holes considered separately show a spread, which suggests some rheological inhomogeneity. However, no definite conclusions can be drawn, because of direct measurement errors at the bore holes and less definable uncertainty in the interpolated distribution of velocity between the holes. The upper one- to two-thirds of the glacier constitutes an anomalous zone in which there is either a strong effect from a complex distribution of stress arising from longitudinal stress gradients or more complicated rheology than in a homogeneous power-law material.


Author(s):  
Roger W. Ainsworth ◽  
John L. Allen ◽  
J. Julian M. Batt

The advent of a new generation of transient rotating turbine simulation facilities, where engine values of Reynolds and Mach number are matched simultaneously together with the relevant rotational parameters for dimensional similitude (Dunn et al [1988], Epstein et al [1984]. Ainsworth et al [1988]), has provided the stimulus for developing improved instrumentation for investigating the aerodynamic flows in these stages. Much useful work has been conducted in the past using hot-wire and laser anemometers. However, hot-wire anemometers are prone to breakage in the high pressure flows required for correct Reynolds numbers, Furthermore some laser techniques require a longer runtime than these transient facilites permit, and generally yield velocity information only, giving no data on loss production. Advances in semiconductor aerodynamic probes are beginning to fulfil this perceived need. This paper describes advances made in the design, construction, and testing of two and three dimensional fast response aerodynamic probes, where semiconductor pressure sensors are mounted directly on the surface of the probes, using techniques which have previously been successfully used on the surface of rotor blades (Ainsworth, Dietz and Nunn [1991]). These are to be used to measure Mach number and flow direction in compressible unsteady flow regimes. In the first section, a brief review is made of the sensor and associated technology which has been developed to permit a flexible design of fast response aerodynamic probe. Following this, an extensive programme of testing large scale aerodynamic models of candidate geometries for suitable semiconductor scale probes is described, and the results of these discussed. The conclusions of these experiments, conducted for turbine representative mean and unsteady flows, yielded new information for optimising the design of the small scale semiconductor probes, in terms of probe geometry, sensor placement, and aerodynamic performance. Details are given of a range of wedge and pyramid semiconductor probes constructed, and the procedures used in calibrating and making measurements with them. Differences in performance are discussed, allowing the experimenter to choose an appropriate probe for the particular measurement required. Finally, the application of prototype semiconductor probes in a transient rotor experiment at HP turbine representative conditions is described, and the data so obtained is compared with (PD solutions of the unsteady viscous flow-field.


Sign in / Sign up

Export Citation Format

Share Document