scholarly journals A proposed model for small-world structural organization of mission teams and tasks in order to optimize efficiency and minimize costs

2006 ◽  
Vol 59 (8-11) ◽  
pp. 1086-1092 ◽  
Author(s):  
André S. Ribeiro ◽  
Miguel Almeida
2014 ◽  
Vol 25 (02) ◽  
pp. 1350088 ◽  
Author(s):  
ZHE-MING LU ◽  
ZHEN WU ◽  
SHI-ZE GUO ◽  
ZHE CHEN ◽  
GUANG-HUA SONG

In this paper, based on the phenomenon that individuals join into and jump from the organizations in the society, we propose a dynamic community model to construct social networks. Two parameters are adopted in our model, one is the communication rate Pa that denotes the connection strength in the organization and the other is the turnover rate Pb, that stands for the frequency of jumping among the organizations. Based on simulations, we analyze not only the degree distribution, the clustering coefficient, the average distance and the network diameter but also the group distribution which is closely related to their community structure. Moreover, we discover that the networks generated by the proposed model possess the small-world property and can well reproduce the networks of social contacts.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jianjun Wu ◽  
Xin Guo ◽  
Huijun Sun ◽  
Bo Wang

Because of the limitation of budget, in the planning of road works, increased efforts should be made on links that are more critical to the whole traffic system. Therefore, it would be helpful to model and evaluate the vulnerability and reliability of the transportation network when the network design is processing. This paper proposes a bilevel transportation network design model, in which the upper level is to minimize the performance of the network under the given budgets, while the lower level is a typical user equilibrium assignment problem. A new solution approach based on particle swarm optimization (PSO) method is presented. The topological effects on the performance of transportation networks are studied with the consideration of three typical networks, regular lattice, random graph, and small-world network. Numerical examples and simulations are presented to demonstrate the proposed model.


2015 ◽  
Vol 26 (02) ◽  
pp. 1550012
Author(s):  
Zhe-Ming Lu ◽  
Zhen Wu ◽  
Hao Luo ◽  
Hao-Xian Wang

This paper proposes an improved community model for social networks based on social mobility. The relationship between the group distribution and the community size is investigated in terms of communication rate and turnover rate. The degree distributions, clustering coefficients, average distances and diameters of networks are analyzed. Experimental results demonstrate that the proposed model possesses the small-world property and can reproduce social networks effectively and efficiently.


2017 ◽  
Vol Volume 24 - 2017 - Special... ◽  
Author(s):  
Ghislain Romaric MELEU ◽  
Paulin MELATAGIA YONTA

We propose a model of growing networks based on cliques formations. A clique is used to illustrate for example co-authorship in co-publication networks, co-occurence of words or collaboration between actors of the same movie. Our model is iterative and at each step, a clique of λη existing vertices and (1 − λ)η new vertices is created and added in the network; η is the mean number of vertices per clique and λ is the proportion of old vertices per clique. The old vertices are selected according to preferential attachment. We show that the degree distribution of the generated networks follows the Power Law of parameter 1 + 1/ λ and thus they are ultra small-world networks with high clustering coefficient and low density. Moreover, the networks generated by the proposed model match with some real co-publication networks such as CARI, EGC and HepTh. Nous proposons un modèle de croissance de graphe basé sur la formation de clique. Une clique peut par exemple illustrer la collaboration entre auteurs dans un réseau de co-publication, les relations de co-occurrence des mots dans une phrase ou les relations entre acteurs d'un film. C'est un modèle itératif qui à chaque étape crée une clique de λη anciens sommets et (1 − λ)η nouveaux sommets et l'insère dans le graphe. η est le nombre moyen de sommets dans une clique et λ la proportion moyenne d'anciens sommets dans une clique. La distribution des degrés des réseaux générés suit la Loi de Puissance de paramètre 1 + 1/λ et par conséquent ce sont des réseaux petit-mondes qui présentent un coefficient de clustering élevé et une faible densité. En outre, les réseaux générés par le modèle proposé reproduisent la structure des réseaux de terrains à l'instar des réseaux de co-publication du CARI, de EGC et de HepTh.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Wenwen Xu ◽  
Fengqi Wu ◽  
Yanying Zhao ◽  
Ran Zhou ◽  
Huigang Wang ◽  
...  

Abstract The isotropic and anisotropic Raman spectra of acetone and deuterated acetone isolated in an argon matrix have been recorded for the understanding of noncoincidence effect (NCE) phenomenon. According to the matrix isolated Raman spectra and DFT calculations, we proposed aggregated model for the explanations of the acetone C=O vibration NCE phenomenon and its concentration effect. The experimental data were in consistence with the DFT calculations performed at the B3LYP-D3/6-311 G (d,p) levels based on the proposed model. The experimental identification of the monomer, dimer and trimer are reported here, and the dynamic of the transformation from monomer to aggregated structure can be easily controlled by tuning annealing temperature.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


Author(s):  
D.P. Bazett-Jones ◽  
F.P. Ottensmeyer

It has been shown for some time that it is possible to obtain images of small unstained proteins, with a resolution of approximately 5Å using dark field electron microscopy (1,2). Applying this technique, we have observed a uniformity in size and shape of the 2-dimensional images of pure specimens of fish protamines (salmon, herring (clupeine, Y-l) and rainbow trout (Salmo irideus)). On the basis of these images, a model for the 3-dimensional structure of the fish protamines has been proposed (2).The known amino acid sequences of fish protamines show stretches of positively charged arginines, separated by regions of neutral amino acids (3). The proposed model for protamine structure (2) consists of an irregular, right-handed helix with the segments of adjacent arginines forming the loops of the coil.


1999 ◽  
Vol 056 (02) ◽  
pp. 0065-0065
Author(s):  
Ch. Hürny ◽  
H. P. Ludin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document