Electric sail phasing maneuvers with radial thrust

2021 ◽  
Vol 179 ◽  
pp. 99-104
Author(s):  
Marco Bassetto ◽  
Luisa Boni ◽  
Giovanni Mengali ◽  
Alessandro A. Quarta
Keyword(s):  
2012 ◽  
Vol 497 ◽  
pp. 78-82
Author(s):  
Fei Hu Zhang ◽  
Sheng Fei Wang ◽  
Qiang Zhang ◽  
Peng Qiang Fu

The working performance of the spindle system is the most important factor to embody the overall performance of the machine tool. To ensure the advanced capabilities, besides the high-precision manufacturing technologies, it is mainly depending on the bearing module and the forces on the spindle. In this paper, a new strategy of the vertical spindle supporting system is presented to meet the high stiffness requirement for the aerostatic bearing. Based on the computational fluid dynamics and finite volume method, a fluid dynamic model and structure model of the large diameter incorporate radial-thrust aerostatic bearing is developed and simulated to find out the pressure distribution laws of the spindle supporting system. The grid subdivision in the direction of film thickness is paid more attentions when establishing the grid of the whole gas film. Simulation results show that this special structure of bearing module can supply enough load capacity and stiffness for the machine tool. The results also indicate that the static characteristics of the bearing are improved as the supply pressure increases and as the supply orifice diameter decreases.


1986 ◽  
Vol 108 (1) ◽  
pp. 12-18 ◽  
Author(s):  
J. A. Lorett ◽  
S. Gopalakrishnan

In a centrifugal pump of volute type, the respective characteristics of the impeller and the volute are such that at only one operating point can the flow parameters be constant along the length of the volute. At off-design conditions the mismatching of characteristics causes variations of velocity and pressure along the periphery of the impeller. This in turn forces cyclic variation of the flow in the impeller channels, introduces variations of the inlet incidence and contributes significantly to the direction and the magnitude of the radial thrust. Furthermore, below a certain pump output, a complete flow reversal occurs over a part of the impeller periphery, thus explaining the onset of recirculation. The paper describes the calculation approach used to derive this aspect of the flow behavior. Because of difficulties in obtaining a closed analytical solution, a step by step computation is employed. Beginning with arbitrarily chosen conditions at the volute tongue, the program computes the flow parameters for following segments, using the continuity and the momentum equations, until the exit from the last segment is reached. The inherent unsteadiness of the relative flow in the impeller is explicitly accounted for. Since the inflow and the velocity in the first segment depend upon the exit conditions of the last, the initial input must be modified, and the computation repeated, until the values are compatible with the exit conditions. In spite of several simplifying assumptions, the results of the calculations show very good agreement with published test results.


2011 ◽  
Vol 4 (4) ◽  
pp. 387-395 ◽  
Author(s):  
Yasuyuki Nishi ◽  
Junichiro Fukutomi ◽  
Ryota Fujiwara

1995 ◽  
Vol 61 (588) ◽  
pp. 3012-3017
Author(s):  
Takaya Kitahora ◽  
Junichi Kurokawa ◽  
Tomitarou Toyokura

Author(s):  
Miguel Asuaje ◽  
Farid Bakir ◽  
Andres Tremante ◽  
Ricardo Noguera ◽  
Robert Rey

A 3D-CFD simulation of the impeller and volute casing of a centrifugal pump has been performed using commercial codes CFX 5.5 and CFX-TASCflow 2.12. The pump has an specific speed of 32 (metric units) and an outside impeller diameter of 400 mm. First, a 3D-flow simulation for the isolated impeller with a structured grid is presented. A sensitivity analysis regarding grid quality and turbulence models were also performed. A 3D quasi-unsteady flow simulation of the impeller-volute assembly is presented, as well. This flow simulation was carried out for several impeller blades and volute tongue relative positions. As a result, the radial thrust on the pump shaft were calculated for different flow rates. Experimental test were carried out in order to compare theoretical pressure fluctuations with the experimental ones measured by various unsteady pressure sensors placed on the impeller shroud and volute. The qualitative and quantitative results ratify numerical predictions.


1990 ◽  
Vol 112 (1) ◽  
pp. 108-114
Author(s):  
A. V. Singh ◽  
V. Kumar

The finite element method is used to study stresses in two types of spherical pressure vessel heads having very wide range of applications in industries. The first problem involves a nozzle to sphere intersection reinforced by a pad and subjected to radial thrust load. The second problem deals with a pressurized thick hemispherical drumhead with a circular manhole. These structures are modeled using eight-node axisymmetric solid of revolution finite elements. Numerical values of circumferential and meridional stresses from the present analysis show excellent agreement with experimental data from the literature.


Sign in / Sign up

Export Citation Format

Share Document