In situ TEM straining of single crystal Au films on polyimide: Change of deformation mechanisms at the nanoscale

2007 ◽  
Vol 55 (16) ◽  
pp. 5558-5571 ◽  
Author(s):  
S.H. Oh ◽  
M. Legros ◽  
D. Kiener ◽  
P. Gruber ◽  
G. Dehm
2020 ◽  
Vol 55 (27) ◽  
pp. 12897-12905
Author(s):  
Leonardo Lari ◽  
Stephan Steinhauer ◽  
Vlado K. Lazarov

1994 ◽  
Vol 364 ◽  
Author(s):  
A. Korner

AbstractThe domain structure and the evolution of antiphase boundaries (APBs) have been investigated in Fe-Al by means of “in-situ” transmission electron microscopy (TEM) heating experiments. Single crystals with composition Fe22.1at%Al and Fe25.6at%Al have been used.The grown-in structure of the Fe22.1at%al single crystal is composed of DO3 ordered particles embedded in the disorderd ±-matrix. A bimodal distribution of the particles was found. Small ordered particles are in between the large precipitates which are surrounded by particle-free zones. Numerous of this large ordered precipitates contain APBs. Crossing the transition temperature to the disordered phase, the small particles dissolve into the ±-matrix and the large particles start to shrink by dissolving.The single crystal with composition Fe25.6at%Al was found to be completely DO3 ordered. The grown-in domains are separated by APBs of type a′0/2〈100〉. At temperatures far below the transition temperature to the B2 phase no significant change in the APB and domain structure has been detected. In contrast, a remarkable evolution in the APB structure has been observed approaching the transition temperature. Coarsening of the domains has been found. Furthermore, APBs of B2-type (a′0/4〈lll〉 shear) are dragged out by dislocation motion. B2- and DC3-type APBs react and junctions are formed. With increasing annealing time, the density of B2-type boundaries increases. The TEM image is dominated by B2-type boundaries linked by the D03-type boundaries. The DO3 superlattice spots are clearly excited approaching the transition temperature to B2. Above the transition temperature, the DO3 spots disappear completely and the diffraction pattern reveals B2 long range order.


2010 ◽  
Vol 2010.8 (0) ◽  
pp. 263-264
Author(s):  
Taeko ANDO ◽  
Hidekazu Ishihara ◽  
Masahiro Nakajima ◽  
Shigeo Arai ◽  
Toshio Fukuda ◽  
...  

Author(s):  
R. Hull ◽  
J.C. Bean ◽  
F. Ross

We have studied deformation mechanisms at epitaxial semiconductor interfaces, primarily in the GexSi1-x/Si and InxGa1-xAs/GaAs systems, by in-situ annealing of metastably strained films in the transmission electron microscope (TEM). This allows direct, real-time, observation and recording of dynamic strain relaxation phenomena such as misfit dislocation nucleation, propagation and interaction mechanisms. This geometry also allows considerable insight into fundamental dislocation physics, as we are able, for example, to accurately quantify dislocation propagation velocities as functions of well-defined effective stresses (in the 108 - 109 pa regime)in the epitaxial layers, and to vary dislocation structure and character by varying the orientation of the epitaxial interface. Comparison with measurements of dislocation velocities in bulk semiconductors and with models of dislocation motion via kink propagation, allows extension of existing measurements and models to the thin film, high stress regime.


2010 ◽  
Vol 241 ◽  
pp. 012060 ◽  
Author(s):  
P Landau ◽  
R Z Shneck ◽  
G Makov ◽  
A Venkert
Keyword(s):  

1996 ◽  
Vol 460 ◽  
Author(s):  
Y. Minonishi ◽  
M. Legros ◽  
D. Caillard

ABSTRACTIn situ TEM straining experiments have been performed on a Ti3Al single crystal, along the c-axis, in order to study the slip of 2c+a dislocations in pyramidal planes. The results show that slip takes place in π1 planes, in contrast with what has been observed after compression tests (slip in π2 planes), and that rows of loops are nucleated in the slip plane. The mechanisms which may control slip in the π1 planes are briefly discussed.


2013 ◽  
Vol 443 (1-3) ◽  
pp. 71-77 ◽  
Author(s):  
Ling-Feng He ◽  
Mahima Gupta ◽  
Clarissa A. Yablinsky ◽  
Jian Gan ◽  
Marquis A. Kirk ◽  
...  
Keyword(s):  

Micron ◽  
2017 ◽  
Vol 94 ◽  
pp. 66-73 ◽  
Author(s):  
Vahid Samaeeaghmiyoni ◽  
Hosni Idrissi ◽  
Jonas Groten ◽  
Ruth Schwaiger ◽  
Dominique Schryvers

Sign in / Sign up

Export Citation Format

Share Document