Mechanisms of exceptional ductility of magnesium single crystal during deformation at room temperature: Multiple twinning and dynamic recrystallization

2014 ◽  
Vol 76 ◽  
pp. 314-330 ◽  
Author(s):  
Konstantin D. Molodov ◽  
Talal Al-Samman ◽  
Dmitri A. Molodov ◽  
Günter Gottstein
2013 ◽  
Vol 28 (20) ◽  
pp. 2829-2834 ◽  
Author(s):  
Yong Seok Choi ◽  
Kyung Il Kim ◽  
Kyu Hwan Oh ◽  
Heung Nam Han ◽  
Suk Hoon Kang ◽  
...  

Abstract


Author(s):  
Ernest L. Hall ◽  
J. B. Vander Sande

The present paper describes research on the mechanical properties and related dislocation structure of CdTe, a II-VI semiconductor compound with a wide range of uses in electrical and optical devices. At room temperature CdTe exhibits little plasticity and at the same time relatively low strength and hardness. The mechanical behavior of CdTe was examined at elevated temperatures with the goal of understanding plastic flow in this material and eventually improving the room temperature properties. Several samples of single crystal CdTe of identical size and crystallographic orientation were deformed in compression at 300°C to various levels of total strain. A resolved shear stress vs. compressive glide strain curve (Figure la) was derived from the results of the tests and the knowledge of the sample orientation.


Author(s):  
Fumio Watari ◽  
J. M. Cowley

STEM coupled with the optical system was used for the investigation of the early oxidation on the surface of Cr. Cr thin films (30 – 1000Å) were prepared by evaporation onto the polished or air-cleaved NaCl substrates at room temperature and 45°C in a vacuum of 10−6 Torr with an evaporation speed 0.3Å/sec. Rather thick specimens (200 – 1000Å) with various preferred orientations were used for the investigation of the oxidation at moderately high temperature (600 − 1100°C). Selected area diffraction patterns in these specimens are usually very much complicated by the existence of the different kinds of oxides and their multiple twinning. The determination of the epitaxial orientation relationship of the oxides formed on the Cr surface was made possible by intensive use of the optical system and microdiffraction techniques. Prior to the formation of the known rhombohedral Cr2O3, a thin spinel oxide, probably analogous to γ -Al203 or γ -Fe203, was formed. Fig. 1a shows the distinct epitaxial growth of the spinel (001) as well as the rhombohedral (125) on the well-oriented Cr(001) surface. In the case of the Cr specimen with the (001) preferred orientation (Fig. 1b), the rings explainable by spinel structure appeared as well as the well defined epitaxial spots of the spinel (001). The microdif fraction from 20A areas (Fig. 2a) clearly shows the same pattern as Fig. Ia with the weaker oxide spots among the more intense Cr spots, indicating that the thickness of the oxide is much less than that of Cr. The rhombohedral Cr2O3 was nucleated preferably at the Cr(011) sites provided by the polycrystalline nature of the present specimens with the relation Cr2O3 (001)//Cr(011), and by further oxidation it grew into full coverage of the rest of the Cr surface with the orientation determined by the initial nucleation.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 386
Author(s):  
Magali Allain ◽  
Cécile Mézière ◽  
Pascale Auban-Senzier ◽  
Narcis Avarvari

Tetramethyl-tetraselenafulvalene (TMTSF) and bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF) are flagship precursors in the field of molecular (super)conductors. The electrocrystallization of these donors in the presence of (n-Bu4N)TaF6 or mixtures of (n-Bu4N)TaF6 and (n-Bu4N)PF6 provided Bechgaard salts formulated as (TMTSF)2(TaF6)0.84(PF6)0.16, (TMTSF)2(TaF6)0.56(PF6)0.44, (TMTSF)2(TaF6)0.44(PF6)0.56 and (TMTSF)2(TaF6)0.12(PF6)0.88, together with the monoclinic and orthorhombic phases δm-(BEDT-TTF)2(TaF6)0.94(PF6)0.06 and δo-(BEDT-TTF)2(TaF6)0.43(PF6)0.57, respectively. The use of BEDT-TTF and a mixture of (n-Bu4N)TaF6/TaF5 afforded the 1:1 phase (BEDT-TTF)2(TaF6)2·CH2Cl2. The precise Ta/P ratio in the alloys has been determined by an accurate single crystal X-ray data analysis and was corroborated with solution 19F NMR measurements. In the previously unknown crystalline phase (BEDT-TTF)2(TaF6)2·CH2Cl2 the donors organize in dimers interacting laterally yet no organic-inorganic segregation is observed. Single crystal resistivity measurements on the TMTSF based materials show typical behavior of the Bechgaard phases with room temperature conductivity σ ≈ 100 S/cm and localization below 12 K indicative of a spin density wave transition. The orthorhombic phase δo-(BEDT-TTF)2(TaF6)0.43(PF6)0.57 is semiconducting with the room temperature conductivity estimated to be σ ≈ 0.16–0.5 S/cm while the compound (BEDT-TTF)2(TaF6)2·CH2Cl2 is also a semiconductor, yet with a much lower room temperature conductivity value of 0.001 to 0.0025 S/cm, in agreement with the +1 oxidation state and strong dimerization of the donors.


1981 ◽  
Vol 64 (2) ◽  
pp. C-22-C-23 ◽  
Author(s):  
R. L. Stewart ◽  
M. Iwasa ◽  
R. C. Bradt

1993 ◽  
Vol 46 (9) ◽  
pp. 1337 ◽  
Author(s):  
JK Beattie ◽  
SP Best ◽  
FH Moore ◽  
BW Skelton ◽  
AH White

Room-temperature single-crystal neutron diffraction studies are recorded for two alums, Cs( Rh /V)(SO4)2.12H2O [cubic, Pa3, a 12.357(5) ( Rh ), 12.434(1)Ǻ (V)], residuals 0.037 and 0.068 for 328 and 164 'observed' reflections, with the intention of defining water molecule hydrogen atom orientations. Whereas the two tervalent hexaaqua cations are similar in size [ rM -O = 2.010(6)Ǻ (M = V) and 2.006(2)Ǻ (M = Rh )] the vanadium salt adopts the β alum modification while rhodium gives an α alum. Significantly, the water coordination geometry is different in the two cases with the tilt angle between the plane of the water molecule and the M-O bond vector being 1° (M = V) and 35° (M = Rh ). The tilt angle for water coordinated to rhodium in CsRh (SeO4)2.12H2O is inferred from the unit cell dimensions to be similar to that of the corresponding sulfate salt and not that which generally pertains for caesium selenate alums. Significant differences in the H-O-H bond angle are found for trigonal planar and trigonal pyramidal water coordination, suggesting that differences in the metal(III)-water interaction are a determinant of the geometry of the coordinated water molecule in the caesium sulfate/ selenate alum lattices.


Sign in / Sign up

Export Citation Format

Share Document