Bulk metallic glass casting investigated using high-speed infrared monitoring and complementary fast scanning calorimetry

2018 ◽  
Vol 151 ◽  
pp. 416-423 ◽  
Author(s):  
Fabian Haag ◽  
Steffen Geisel ◽  
Güven Kurtuldu ◽  
Jörg F. Löffler
2010 ◽  
Vol 24 (15n16) ◽  
pp. 2320-2325 ◽  
Author(s):  
JIANSHENG GU ◽  
BINGCHEN WEI ◽  
TAIHUA ZHANG ◽  
YIHUI FENG ◽  
YANPING HU ◽  
...  

Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr 64.13 Cu 15.75 Ni 10.12 Al 10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.


2021 ◽  
Vol 875 ◽  
pp. 70-75
Author(s):  
Syed Zameer Abbas ◽  
Rashid Ali ◽  
Syed Muttahir Shah ◽  
Owais Jan ◽  
Munim Awan

Bulk metallic glasses (BMGs) are an important class of materials with unique set of properties. A bulk metallic glass with composition of (Fe0.6Co0.4)71Nb4Si5B20 was cast in the form of a 1 mm thick strip in a water cooled copper mold. The BMG produced was characterized for structure, thermal and mechanical properties. The X-ray diffraction performed on the as cast alloy has shown completely amorphous structure. The glass transition and crystallization peak temperatures obtained through differential scanning calorimetry scan were 542 °C and 588.4 °C, respectively. Some cast amorphous alloy sample was annealed below glass transition (450 °C for 30 mi93nutes) and others above glass transition (580 °C for 5 minutes) temperatures. Nano- indentation hardness of 13.3 GPa was obtained for as cast alloy while a hardness values of 12.8 and 15.84 GPa were measured for heat treated alloys at temperature of 450 °C and 580 °C, respectively. Increase in hardness was attributed to formation of crystals in an amorphous matrix whereas decrease in hardness was due to relaxation of quenching residual stresses. The maximum value of elastic modulus obtained through indentation was 255 GPa for 580 °C heat treated sample.


2019 ◽  
Vol 58 (1) ◽  
pp. 304-312
Author(s):  
Ádám Révész ◽  
András Horváth ◽  
Gábor Ribárik ◽  
Erhard Schafler ◽  
David J. Browne ◽  
...  

Abstract Bulk metallic glass of Cu60Zr20Ti20 composition has been synthesized by copper mold casting. Slices of the as-cast glass has been subjected to severe plastic deformation by high-pressure torsion for different whole turns. The microstructure and the thermal behavior of the deformed disks have been investigated by X-ray diffraction and differential scanning calorimetry. It was confirmed that the initial compression preceding the high pressure torsion induces crystallized structure, which shows only minor further changes upon the severe plastic shear deformation achieved by twisting the sample. The X-ray line profiles have been evaluated by the Convolutional Whole Profile Fitting algorithm in order to determine the evolution of the microstructural parameters, such as the median and variance of the crystallite size distribution, average crystallite size and dislocation density as a function of the number of revolutions. Hardness measurements by nanoindentation have also been carried out on the as-cast alloys and the deformed disks.


2020 ◽  
Vol 6 (17) ◽  
pp. eaay1454
Author(s):  
Xavier Monnier ◽  
Daniele Cangialosi ◽  
Beatrice Ruta ◽  
Ralf Busch ◽  
Isabella Gallino

Understanding how glasses form, the so-called vitrification, remains a major challenge in materials science. Here, we study vitrification kinetics, in terms of the limiting fictive temperature, and atomic mobility related to the α-relaxation of an Au-based bulk metallic glass former by fast scanning calorimetry. We show that the time scale of the α-relaxation exhibits super-Arrhenius temperature dependence typical of fragile liquids. In contrast, vitrification kinetics displays milder temperature dependence at moderate undercooling, and thereby, vitrification takes place at temperatures lower than those associated to the α-relaxation. This finding challenges the paradigmatic view based on a one-to-one correlation between vitrification, leading to the glass transition, and the α-relaxation. We provide arguments that at moderate to deep undercooling, other atomic motions, which are not involved in the α-relaxation and that originate from the heterogeneous dynamics in metallic glasses, contribute to vitrification. Implications from the viewpoint of glasses fundamental properties are discussed.


2007 ◽  
Vol 1048 ◽  
Author(s):  
Jinwoo Hwang ◽  
Hongbo Cao ◽  
Paul M. Voyles

AbstractWe investigated the influence of annealing on the nanometer-scale medium-range order in Zr54Cu38Al8 bulk metallic glass using fluctuation electron microscopy. Fluctuation microscopy experiments probing structure at a length scale of 1 nm show that the as-cast Zr bulk metallic glass contains significant medium range order. That structure is unchanged by annealing at 87% of the glass transition temperature for 24 hours, although that anneal does significantly change the differential scanning calorimetry trace.


Sign in / Sign up

Export Citation Format

Share Document