Identifying the true structure and origin of the water-quench induced hydride phase in Zr-2.5Nb alloy

2021 ◽  
pp. 117369
Author(s):  
Fei Long ◽  
Yu Luo ◽  
Nima N. Badr ◽  
Oksana Shiman ◽  
Matt Topping ◽  
...  
Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
Toichiro Kuwabara

Although scanning electron microscopy has a great potential in biological application, there are certain limitations in visualization of the biological structure. Satisfactory techniques to demonstrate natural surfaces of the tissue and the cell have been reported by several investigators. However, it is commonly found that the surface cell membrane is covered with a minute amount of mucin, secretory substance or tissue fluid as physiological, pathological or artefactual condition. These substances give a false surface appearance, especially when the tissue is fixed with strong fixatives. It seems important to remove these coating substances from the surface of the cell for demonstration of the true structure.


Author(s):  
D.M. Vanderwalker

Aluminum-lithium alloys have a low density and high strength to weight ratio. They are being developed for the aerospace industry.The high strength of Al-Li can be attributed to precipitation hardening. Unfortunately when aged, Al-Li aquires a low ductility and fracture toughness. The precipitate in Al-Li is part of a sequence SSSS → Al3Li → AlLi A description of the phases may be found in reference 1 . This paper is primarily concerned with the Al3Li phase. The addition of Zr to Al-Li is being explored to find the optimum in properties. Zirconium improves fracture toughness and inhibits recrystallization. This study is a comparision between two Al-Li-Zr alloys differing in Zr concentration.Al-2.99Li-0.17Zr(alloy A) and Al-2.99Li-0.67Zr (alloy B) were solutionized for one hour at 500oc followed by a water quench. The specimens were then aged at 150°C for 16 or 40 hours. The foils were punched into 3mm discs. The specimens were electropolished with a 1/3 nitric acid 2/3 methanol solution. The transmission electron microscopy was conducted on the JEM 200CX microscope.


Author(s):  
A. Olsen ◽  
J.C.H. Spence ◽  
P. Petroff

Since the point resolution of the JEOL 200CX electron microscope is up = 2.6Å it is not possible to obtain a true structure image of any of the III-V or elemental semiconductors with this machine. Since the information resolution limit set by electronic instability (1) u0 = (2/πλΔ)½ = 1.4Å for Δ = 50Å, it is however possible to obtain, by choice of focus and thickness, clear lattice images both resembling (see figure 2(b)), and not resembling, the true crystal structure (see (2) for an example of a Fourier image which is structurally incorrect). The crucial difficulty in using the information between Up and u0 is the fractional accuracy with which Af and Cs must be determined, and these accuracies Δff/4Δf = (2λu2Δf)-1 and ΔCS/CS = (λ3u4Cs)-1 (for a π/4 phase change, Δff the Fourier image period) are strongly dependent on spatial frequency u. Note that ΔCs(up)/Cs ≈ 10%, independent of CS and λ. Note also that the number n of identical high contrast spurious Fourier images within the depth of field Δz = (αu)-1 (α beam divergence) decreases with increasing high voltage, since n = 2Δz/Δff = θ/α = λu/α (θ the scattering angle). Thus image matching becomes easier in semiconductors at higher voltage because there are fewer high contrast identical images in any focal series.


Author(s):  
Richard McCleary ◽  
David McDowall ◽  
Bradley J. Bartos

The general AutoRegressive Integrated Moving Average (ARIMA) model can be written as the sum of noise and exogenous components. If an exogenous impact is trivially small, the noise component can be identified with the conventional modeling strategy. If the impact is nontrivial or unknown, the sample AutoCorrelation Function (ACF) will be distorted in unknown ways. Although this problem can be solved most simply when the outcome of interest time series is long and well-behaved, these time series are unfortunately uncommon. The preferred alternative requires that the structure of the intervention is known, allowing the noise function to be identified from the residualized time series. Although few substantive theories specify the “true” structure of the intervention, most specify the dichotomous onset and duration of an impact. Chapter 5 describes this strategy for building an ARIMA intervention model and demonstrates its application to example interventions with abrupt and permanent, gradually accruing, gradually decaying, and complex impacts.


2009 ◽  
Vol 13 (5) ◽  
pp. 625-655 ◽  
Author(s):  
Christophre Georges ◽  
John C. Wallace

In this paper, we explore the consequence of learning to forecast in a very simple environment. Agents have bounded memory and incorrectly believe that there is nonlinear structure underlying the aggregate time series dynamics. Under social learning with finite memory, agents may be unable to learn the true structure of the economy and rather may chase spurious trends, destabilizing the actual aggregate dynamics. We explore the degree to which agents' forecasts are drawn toward a minimal state variable learning equilibrium as well as a weaker long-run consistency condition.


2006 ◽  
Vol 45 (7-8) ◽  
pp. 381-386 ◽  
Author(s):  
V. D. Dobrovol’skii ◽  
O. G. Radchenko ◽  
Yu. M. Solonin ◽  
N. P. Gorbachuk

2005 ◽  
Vol 290 ◽  
pp. 260-263 ◽  
Author(s):  
Zdeněk Chlup ◽  
Ivo Dlouhý ◽  
Aldo Roberto Boccaccini ◽  
D.N. Boccaccini ◽  
Cristina Leonelli ◽  
...  

The design of composite materials leads to the development of multi-component systems where each constituent has a specific function in the material, from technological and/or application points of view. Examples of such composite systems are the cordierite-mullite refractory materials investigated in this contribution. Two different commercially available compositions were selected for evaluation of the influence of microstructure on fracture behaviour under thermal shock conditions. The materials were exposed to water-quench tests from 1250°C and subsequently the fracture toughness was evaluated using the chevron notched specimen technique. The results were compared to those obtained on as-received materials. Microstructural damage was also studied applying fractographic techniques with the aim to gain knowledge on the thermal shock damage mechanisms acting in the materials.


2019 ◽  
Vol 3 (2) ◽  
pp. 274-306 ◽  
Author(s):  
Ruben Sanchez-Romero ◽  
Joseph D. Ramsey ◽  
Kun Zhang ◽  
Madelyn R. K. Glymour ◽  
Biwei Huang ◽  
...  

We test the adequacies of several proposed and two new statistical methods for recovering the causal structure of systems with feedback from synthetic BOLD time series. We compare an adaptation of the first correct method for recovering cyclic linear systems; Granger causal regression; a multivariate autoregressive model with a permutation test; the Group Iterative Multiple Model Estimation (GIMME) algorithm; the Ramsey et al. non-Gaussian methods; two non-Gaussian methods by Hyvärinen and Smith; a method due to Patel et al.; and the GlobalMIT algorithm. We introduce and also compare two new methods, Fast Adjacency Skewness (FASK) and Two-Step, both of which exploit non-Gaussian features of the BOLD signal. We give theoretical justifications for the latter two algorithms. Our test models include feedback structures with and without direct feedback (2-cycles), excitatory and inhibitory feedback, models using experimentally determined structural connectivities of macaques, and empirical human resting-state and task data. We find that averaged over all of our simulations, including those with 2-cycles, several of these methods have a better than 80% orientation precision (i.e., the probability of a directed edge is in the true structure given that a procedure estimates it to be so) and the two new methods also have better than 80% recall (probability of recovering an orientation in the true structure).


Sign in / Sign up

Export Citation Format

Share Document