Injectable poly(lactic-co-glycolic) acid scaffolds with in situ pore formation for tissue engineering

2009 ◽  
Vol 5 (8) ◽  
pp. 2847-2859 ◽  
Author(s):  
Melissa D. Krebs ◽  
Kathleen A. Sutter ◽  
Angela S.P. Lin ◽  
Robert E. Guldberg ◽  
Eben Alsberg
2018 ◽  
Vol 42 (2) ◽  
pp. 72-79 ◽  
Author(s):  
Mina Hajihasani Biouki ◽  
Hamid Mobedi ◽  
Akbar Karkhaneh ◽  
Morteza Daliri Joupari

Introduction: The use of injectable scaffolds as a minimally invasive method is a good choice in tissue engineering applications. A critical parameter for the tissue engineering scaffolds is a suitable morphology with interconnected pores. We present the development of a simvastatin loaded scaffold that forms in situ and provides the porous structure with interconnected pores. Methods: The formulation of these scaffolds includes a polymeric solution of poly lactic-co-glycolic acid (25 wt%) in N-methyl-2-pyrrolidone containing 6 wt% deionized water and porogen (mannitol, four times the weight of the polymer). We have grafted simvastatin to poly lactic-co-glycolic acid by the esterification reactions. Simvastatin or simvastatin-grafted poly lactic-co-glycolic acid in different levels was added to polymer solution and finally the solution was injected into phosphate buffered saline. The simvastatin-grafted poly lactic-co-glycolic acid was characterized by attenuated total reflection Fourier-transform infra-red and 1H-nuclear magnetic resonance spectroscopy. The morphology, porosity, and biocompatibility of the scaffolds were evaluated. The in vitro simvastatin release from the various formulations was studied. Osteogenic differentiation of the adipose-derived stem cells was investigated using alkaline phosphatase activity assay and cell mineralization was evaluated using Alizarin red staining. Results: The morphology results showed the resultant scaffold was porous with the interconnected pores. The scaffolds presented 91% porosity. Non-toxic doses of simvastatin in the scaffolds were determined by methyl-thiazolyl diphenyl-tetrazolium bromide assay. The released simvastatin from the scaffolds continues over 80 days. Alkaline phosphatase activity and Alizarin red results indicated that cell osteogenic differentiation is promoted. Conclusion: The results demonstrated that release of simvastatin from the injectable scaffolds can have positive effects on osteogenic differentiation of the adipose-derived stem cells.


2007 ◽  
Vol 58 (2) ◽  
pp. 201-202
Author(s):  
Y. Tada ◽  
T. Suzuki ◽  
Y. Nomoto ◽  
S. Kanemaru ◽  
T. Nakamura ◽  
...  

Author(s):  
Vikas V. Gaikwad ◽  
Abasaheb B. Patil ◽  
Madhuri V. Gaikwad

Scaffolds are used for drug delivery in tissue engineering as this system is a highly porous structure to allow tissue growth.  Although several tissues in the body can regenerate, other tissue such as heart muscles and nerves lack regeneration in adults. However, these can be regenerated by supplying the cells generated using tissue engineering from outside. For instance, in many heart diseases, there is need for heart valve transplantation and unfortunately, within 10 years of initial valve replacement, 50–60% of patients will experience prosthesis associated problems requiring reoperation. This could be avoided by transplantation of heart muscle cells that can regenerate. Delivery of these cells to the respective tissues is not an easy task and this could be done with the help of scaffolds. In situ gel forming scaffolds can also be used for the bone and cartilage regeneration. They can be injected anywhere and can take the shape of a tissue defect, avoiding the need for patient specific scaffold prefabrication and they also have other advantages. Scaffolds are prepared by biodegradable material that result in minimal immune and inflammatory response. Some of the very important issues regarding scaffolds as drug delivery systems is reviewed in this article.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 287
Author(s):  
Ye Lin Park ◽  
Kiwon Park ◽  
Jae Min Cha

Over the past decades, a number of bone tissue engineering (BTE) approaches have been developed to address substantial challenges in the management of critical size bone defects. Although the majority of BTE strategies developed in the laboratory have been limited due to lack of clinical relevance in translation, primary prerequisites for the construction of vascularized functional bone grafts have gained confidence owing to the accumulated knowledge of the osteogenic, osteoinductive, and osteoconductive properties of mesenchymal stem cells and bone-relevant biomaterials that reflect bone-healing mechanisms. In this review, we summarize the current knowledge of bone-healing mechanisms focusing on the details that should be embodied in the development of vascularized BTE, and discuss promising strategies based on 3D-bioprinting technologies that efficiently coalesce the abovementioned main features in bone-healing systems, which comprehensively interact during the bone regeneration processes.


Sign in / Sign up

Export Citation Format

Share Document