Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo

2016 ◽  
Vol 44 ◽  
pp. 155-167 ◽  
Author(s):  
Ju-Ang Kim ◽  
Jiwon Lim ◽  
Raja Naren ◽  
Hui-suk Yun ◽  
Eui Kyun Park
2020 ◽  
Vol 27 (6) ◽  
pp. 838-853 ◽  
Author(s):  
Madalina Icriverzi ◽  
Valentina Dinca ◽  
Magdalena Moisei ◽  
Robert W. Evans ◽  
Mihaela Trif ◽  
...  

: Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. : Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. : This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1611
Author(s):  
Caroline J. Harrison ◽  
Paul V. Hatton ◽  
Piergiorgio Gentile ◽  
Cheryl A. Miller

Injectable nanoscale hydroxyapatite (nHA) systems are highly promising biomaterials to address clinical needs in bone tissue regeneration, due to their excellent biocompatibility, bioinspired nature, and ability to be delivered in a minimally invasive manner. Bulk strontium-substituted hydroxyapatite (SrHA) is reported to encourage bone tissue growth by stimulating bone deposition and reducing bone resorption, but there are no detailed reports describing the preparation of a systematic substitution up to 100% at the nanoscale. The aim of this work was therefore to fabricate systematic series (0–100 atomic% Sr) of SrHA pastes and gels using two different rapid-mixing methodological approaches, wet precipitation and sol-gel. The full range of nanoscale SrHA materials were successfully prepared using both methods, with a measured substitution very close to the calculated amounts. As anticipated, the SrHA samples showed increased radiopacity, a beneficial property to aid in vivo or clinical monitoring of the material in situ over time. For indirect methods, the greatest cell viabilities were observed for the 100% substituted SrHA paste and gel, while direct viability results were most likely influenced by material disaggregation in the tissue culture media. It was concluded that nanoscale SrHAs were superior biomaterials for applications in bone surgery, due to increased radiopacity and improved biocompatibility.


2020 ◽  
Vol 21 (20) ◽  
pp. 7541
Author(s):  
Małgorzata Krok-Borkowicz ◽  
Katarzyna Reczyńska ◽  
Łucja Rumian ◽  
Elżbieta Menaszek ◽  
Maciej Orzelski ◽  
...  

Poly(l-lactide-co-glycolide) (PLGA) porous scaffolds were modified with collagen type I (PLGA/coll) or hydroxyapatite (PLGA/HAp) and implanted in rabbits osteochondral defects to check their biocompatibility and bone tissue regeneration potential. The scaffolds were fabricated using solvent casting/particulate leaching method. Their total porosity was 85% and the pore size was in the range of 250–320 µm. The physico-chemical properties of the scaffolds were evaluated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), sessile drop, and compression tests. Three types of the scaffolds (unmodified PLGA, PLGA/coll, and PLGA/HAp) were implanted into the defects created in New Zealand rabbit femoral trochlears; empty defect acted as control. Samples were extracted after 1, 4, 12, and 26 weeks from the implantation, evaluated using micro-computed tomography (µCT), and stained by Masson–Goldner and hematoxylin-eosin. The results showed that the proposed method is suitable for fabrication of highly porous PLGA scaffolds. Effective deposition of both coll and HAp was confirmed on all surfaces of the pores through the entire scaffold volume. In the in vivo model, PLGA and PLGA/HAp scaffolds enhanced tissue ingrowth as shown by histological and morphometric analyses. Bone formation was the highest for PLGA/HAp scaffolds as evidenced by µCT. Neo-tissue formation in the defect site was well correlated with degradation kinetics of the scaffold material. Interestingly, around PLGA/coll extensive inflammation and inhibited tissue healing were detected, presumably due to immunological response of the host towards collagen of bovine origin. To summarize, PLGA scaffolds modified with HAp are the most promising materials for bone tissue regeneration.


RSC Advances ◽  
2015 ◽  
Vol 5 (97) ◽  
pp. 79703-79714 ◽  
Author(s):  
Hengsong Shi ◽  
Qi Gan ◽  
Xiaowei Liu ◽  
Yifan Ma ◽  
Jun Hu ◽  
...  

Polylactic acid (PLA) has been extensively researched in biomedical engineering applications due to its superior mechanical strength and biocompatibility in vivo.


2014 ◽  
Vol 2 (37) ◽  
pp. 6293-6305 ◽  
Author(s):  
Tao Liu ◽  
Xinbo Ding ◽  
Dongzhi Lai ◽  
Yongwei Chen ◽  
Ridong Zhang ◽  
...  

MGHA-introduced, an electrospun SF-based composite can exhibit improved physicochemical and biological properties to stimulate bone tissue regeneration and repair.


2017 ◽  
Vol 104 ◽  
pp. 1975-1985 ◽  
Author(s):  
S. Saravanan ◽  
Anjali Chawla ◽  
M. Vairamani ◽  
T.P. Sastry ◽  
K.S. Subramanian ◽  
...  

2014 ◽  
Vol 67 ◽  
pp. 360-366 ◽  
Author(s):  
Jong Seo Lee ◽  
Sang Dae Baek ◽  
Jayachandran Venkatesan ◽  
Ira Bhatnagar ◽  
Hee Kyung Chang ◽  
...  

2020 ◽  
Author(s):  
Miaomiao He ◽  
Ce zhu ◽  
Huan Xu ◽  
dan Sun ◽  
Chen Chen ◽  
...  

The use of polyetheretherketone (PEEK) has grown exponentially in the biomedical field in recent decades due to its outstanding biomechanical properties. However, its lack of bioactivity/osteointegration remains an unresolved issue towards its wide use in orthopedic applications. In this work, graphene nanosheets have been incorporated into PEEK to obtain multifunctional nanocomposites. Due to the formation of electrical percolation network and the π-π* conjugation between graphene and PEEK, the resulting composites have achieved twelve order of magnitude enhancement in its electrical conductivity, and have enabled electrophoretic deposition of bioactive/anti-bacterial coating consisting of stearyltrimethylammonium chloride (STAC) modified hydroxyapatite (HA). The coated composite implant showed significant boosting of BMSC cell proliferation in vitro. In addition, the strong photothermal conversion effect of the graphene nanofillers have enabled laser induced heating of our nanocomposite implants, where the temperature of the implant can reach 45 oC in 150 s. The unique multi-functionality of our composite implant has also been demonstrated for photothermal applications such as enhancing bacterial (E. coli and S. aureus) eradication and tumor cell (MG63) inhibition, as well as bone tissue regeneration in vivo. The results suggest the strong potential of our multi-functional implant in bone repair applications as well as multi-modal therapy of challenging bone diseases such as osteosarcoma and osteomyelitis


Sign in / Sign up

Export Citation Format

Share Document