scholarly journals Detecting keyhole pore defects and monitoring process signatures during laser powder bed fusion: A correlation between in situ pyrometry and ex situ X-ray radiography

2020 ◽  
Vol 35 ◽  
pp. 101336 ◽  
Author(s):  
Jean-Baptiste Forien ◽  
Nicholas P. Calta ◽  
Philip J. DePond ◽  
Gabe M. Guss ◽  
Tien T. Roehling ◽  
...  
JOM ◽  
2020 ◽  
Vol 73 (1) ◽  
pp. 201-211 ◽  
Author(s):  
Benjamin Gould ◽  
Sarah Wolff ◽  
Niranjan Parab ◽  
Cang Zhao ◽  
Maria Cinta Lorenzo-Martin ◽  
...  

Author(s):  
Felix Schmeiser ◽  
Erwin Krohmer ◽  
Christian Wagner ◽  
Norbert Schell ◽  
Eckart Uhlmann ◽  
...  

AbstractLaser powder bed fusion is an additive manufacturing process that employs highly focused laser radiation for selective melting of a metal powder bed. This process entails a complex heat flow and thermal management that results in characteristic, often highly textured microstructures, which lead to mechanical anisotropy. In this study, high-energy X-ray diffraction experiments were carried out to illuminate the formation and evolution of microstructural features during LPBF. The nickel-base alloy Inconel 625 was used for in situ experiments using a custom LPBF system designed for these investigations. The diffraction patterns yielded results regarding texture, lattice defects, recrystallization, and chemical segregation. A combination of high laser power and scanning speed results in a strong preferred crystallographic orientation, while low laser power and scanning speed showed no clear texture. The observation of a constant gauge volume revealed solid-state texture changes without remelting. They were related to in situ recrystallization processes caused by the repeated laser scanning. After recrystallization, the formation and growth of segregations were deduced from an increasing diffraction peak asymmetry and confirmed by ex situ scanning transmission electron microscopy. Graphical Abstract


Author(s):  
Sheng Li ◽  
Biao Cai ◽  
Ranxi Duan ◽  
Lei Tang ◽  
Zihan Song ◽  
...  

AbstractIsotropy in microstructure and mechanical properties remains a challenge for laser powder bed fusion (LPBF) processed materials due to the epitaxial growth and rapid cooling in LPBF. In this study, a high-strength TiB2/Al-Cu composite with random texture was successfully fabricated by laser powder bed fusion (LPBF) using pre-doped TiB2/Al-Cu composite powder. A series of advanced characterisation techniques, including synchrotron X-ray tomography, correlative focussed ion beam–scanning electron microscopy (FIB-SEM), scanning transmission electron microscopy (STEM), and synchrotron in situ X-ray diffraction, were applied to investigate the defects and microstructure of the as-fabricated TiB2/Al-Cu composite across multiple length scales. The study showed ultra-fine grains with an average grain size of about 0.86 μm, and a random texture was formed in the as-fabricated condition due to rapid solidification and the TiB2 particles promoting heterogeneous nucleation. The yield strength and total elongation of the as-fabricated composite were 317 MPa and 10%, respectively. The contributions of fine grains, solid solutions, dislocations, particles, and Guinier–Preston (GP) zones were calculated. Failure was found to be initiated from the largest lack-of-fusion pore, as revealed by in situ synchrotron tomography during tensile loading. In situ synchrotron diffraction was used to characterise the lattice strain evolution during tensile loading, providing important data for the development of crystal-plasticity models.


2020 ◽  
Vol 195 ◽  
pp. 108987
Author(s):  
Nicholas P. Calta ◽  
Vivek Thampy ◽  
Duncan R.C. Lee ◽  
Aiden A. Martin ◽  
Rishi Ganeriwala ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1856
Author(s):  
Claudia Schwerz ◽  
Lars Nyborg

In situ monitoring of the melt pools in laser powder bed fusion (LPBF) has enabled the elucidation of process phenomena. There has been an increasing interest in also using melt pool monitoring to identify process anomalies and control the quality of the manufactured parts. However, a better understanding of the variability of melt pools and the relation to the incidence of internal flaws are necessary to achieve this goal. This study aims to link distributions of melt pool dimensions to internal flaws and signal characteristics obtained from melt pool monitoring. A process mapping approach is employed in the manufacturing of Hastelloy X, comprising a vast portion of the process space. Ex situ measurements of melt pool dimensions and analysis of internal flaws are correlated to the signal obtained through in situ melt pool monitoring in the visible and near-infrared spectra. It is found that the variability in melt pool dimensions is related to the presence of internal flaws, but scatter in melt pool dimensions is not detectable by the monitoring system employed in this study. The signal intensities are proportional to melt pool dimensions, and the signal is increasingly dynamic following process conditions that increase the generation of spatter.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 176
Author(s):  
Patrick Hegele ◽  
Jonas von Kobylinski ◽  
Leonhard Hitzler ◽  
Christian Krempaszky ◽  
Ewald Werner

The additive manufacturing process of laser powder-bed fusion (L-PBF) is an increasingly popular approach for patient-specific production of dental frameworks made from Co-Cr alloys. Macroscopically, frameworks produced in this way exhibit high anisotropy especially in Young’s modulus, and are missing standardized requirements. Microscopically, pronounced texture and high residual stresses are characteristic. To reduce resulting detrimental effects, the as-built (AB) parts are heat treated. Dependent on the treatment temperature, effects like the transformation of the γ-phase matrix in the AB condition to ϵ-phase, precipitation, stress relief, and grain growth were observed. While the existence of these processes was established in the past, little is known about their kinetics. To fill this gap, these effects were studied with in-situ X-ray diffraction (XRD) methods in isothermal heat treatments (HTs) at four different sample surface temperatures TS reaching from 650∘C to 900∘C. Furthermore, room temperature ex situ XRD and SEM/EDS measurements completed the analysis. An evaluation of the datasets, with single peak fitting and QXRD methods, yielded the following results. In the HTs below a certain threshold, a γ-to-ϵ transformation was observed in the sample bulk and close to the sample surface. In the latter case, evidence for a partially strain-induced transformation related to oxide formation was present. Above this threshold and possibly slightly below, σ- and Laves-phase precipitated. Additionally, peak profile evolutions hinted at a drop of inter- and intragranular stresses within the first 30 to 60 min. Therefore, an HT of about 30 to 60 min slightly above the threshold is proposed as optimal for reducing residual stresses while retaining a predominantly single-phased microstructure, possibly superior in corrosion properties and likewise in bio-compatibility.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Cara G. Kolb ◽  
Katja Zier ◽  
Jan-Carl Grager ◽  
Andreas Bachmann ◽  
Tobias Neuwirth ◽  
...  

AbstractLaser powder bed fusion (L-PBF) is increasingly used to fabricate functional parts used in safety-relevant applications. To ensure that the sophisticated part specifications are achieved, 100% quality inspections are performed subsequent to the buildup process. However, knowledge about the detectability of defects in L-PBF parts using NDT methods is limited. This paper analyzes the suitability of NDT techniques in an ex situ environment, in particular active infrared thermography, neutron grating interferometry (nGI), X-ray computed tomography, and ultrasonic testing for the examination of L-PBF parts made from Inconel 718. Based on a test specimen with artificially inserted defects with varying dimensions and depths, these NDT techniques were compared in terms of their attainable resolution and thus defect detection capability. The empirical studies revealed that nGI shows the highest resolution capability. It was possible to detect defects with a diameter of 100–200 m at a depth of 60–80 $${\upmu } \hbox {m}$$ μ m . The results are discussed with regard to their relevance for the examination of L-PBF parts and thus not only contribute to a better understanding of the potential of the NDT techniques in comparison but also assist stakeholders in additive manufacturing in evaluating the suitability of the NDT techniques investigated.


Sign in / Sign up

Export Citation Format

Share Document