scholarly journals A comparative analysis of Inconel 718 made by additive manufacturing and suction casting: Microstructure evolution in homogenization

2020 ◽  
Vol 36 ◽  
pp. 101404 ◽  
Author(s):  
Yunhao Zhao ◽  
Kun Li ◽  
Matthew Gargani ◽  
Wei Xiong
2021 ◽  
Vol 289 ◽  
pp. 129401 ◽  
Author(s):  
Teng Zhang ◽  
Pengfei Li ◽  
Jianzhong Zhou ◽  
Chuanyu Wang ◽  
Xiankai Meng ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1051
Author(s):  
Mohammad Amin Jabbareh ◽  
Hamid Assadi

There is a growing interest in laser melting processes, e.g., for metal additive manufacturing. Modelling and numerical simulation can help to understand and control microstructure evolution in these processes. However, standard methods of microstructure simulation are generally not suited to model the kinetic effects associated with rapid solidification in laser processing, especially for material systems that contain intermetallic phases. In this paper, we present and employ a tailored phase-field model to demonstrate unique features of microstructure evolution in such systems. Initially, the problem of anomalous partitioning during rapid solidification of intermetallics is revisited using the tailored phase-field model, and the model predictions are assessed against the existing experimental data for the B2 phase in the Ni-Al binary system. The model is subsequently combined with a Potts model of grain growth to simulate laser processing of polycrystalline alloys containing intermetallic phases. Examples of simulations are presented for laser processing of a nickel-rich Ni-Al alloy, to demonstrate the application of the method in studying the effect of processing conditions on various microstructural features, such as distribution of intermetallic phases in the melt pool and the heat-affected zone. The computational framework used in this study is envisaged to provide additional insight into the evolution of microstructure in laser processing of industrially relevant materials, e.g., in laser welding or additive manufacturing of Ni-based superalloys.


2020 ◽  
Vol 36 ◽  
pp. 101534
Author(s):  
Peeyush Nandwana ◽  
Rangasayee Kannan ◽  
Derek Siddel

Author(s):  
Zhiyuan Liu ◽  
Dandan Zhao ◽  
Pei Wang ◽  
Ming Yan ◽  
Can Yang ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 266
Author(s):  
Wakshum M. Tucho ◽  
Vidar Hansen

The widely adopted temperature for solid solution heat treatment (ST) for the conventionally fabricated Inconel 718 is 1100 °C for a hold time of 1 h or less. This ST scheme is, however, not enough to dissolve Laves and annihilate dislocations completely in samples fabricated with Laser metal powder bed fusion (L-PBF) additive manufacturing (AM)-Inconel 718. Despite this, the highest hardness obtained after aging for ST temperatures (970–1250 °C) is at 1100 °C/1 as we have ascertained in our previous studies. The unreleased residual stresses in the retained lattice defects potentially affect other properties of the material. Hence, this work aims to investigate if a longer hold time of ST at 1100 °C will lead to complete recrystallization while maintaining the hardness after aging or not. For this study, L-PBF-Inconel 718 samples were ST at 1100 °C at various hold times (1, 3, 6, 9, 16, or 24 h) and aged to study the effects on microstructure and hardness. In addition, a sample was directly aged to study the effects of bypassing ST. The samples (ST and aged) gain hardness by 43–49%. The high density of annealing twins evolved during 3 h of ST and only slightly varies for longer ST.


2017 ◽  
Vol 13 ◽  
pp. 116-123 ◽  
Author(s):  
N. Ortega ◽  
S. Martínez ◽  
I. Cerrillo ◽  
A. Lamikiz ◽  
E. Ukar

Sign in / Sign up

Export Citation Format

Share Document