Measurement and simulation of pollutant emissions from marine diesel combustion engine and their reduction by water injection

2010 ◽  
Vol 41 (6) ◽  
pp. 898-906 ◽  
Author(s):  
Nader Larbi ◽  
Jamel Bessrour
2021 ◽  
pp. 146808742110442
Author(s):  
Sebastian Welscher ◽  
Mohammad Hossein Moradi ◽  
Antonino Vacca ◽  
Peter Bloch ◽  
Michael Grill ◽  
...  

Due to increasing climate awareness and the introduction of much stricter exhaust emission legislation the internal combustion engine technology faces major challenges. Although the development and state of technology of internal combustion engines generally reached a very high level over the last years those need to be improved even more. Combining water injection with a diesel engine, therefore, seems to be the next logical step in developing a highly efficient drive train for future mobility. To investigate these potentials, a comprehensive evaluation of water injection on the diesel engine was carried out. This study covers >560 individual operating points on the test bench. The tests were carried out on a single-cylinder derived from a Euro 6d four-cylinder passenger car with the port water injection. Furthermore, a detailed pressure trace analysis (PTA) was performed to evaluate various aspects regarding combustion, emission, etc. The results show no significant effects of water injection on the combustion process, but great potential for NOx reduction. It has been shown that with the use of water injection at water-to-fuel rates of 25%, 50%, and 100%, NOx reduction without deterioration of soot levels can be achieved in 62%, 40%, and 20% of the experiments, respectively. Furthermore, water injection in combination with EGR offers additional reduction in NOx emissions.


2019 ◽  
Vol 184 ◽  
pp. 139-158 ◽  
Author(s):  
Sipeng Zhu ◽  
Bo Hu ◽  
Sam Akehurst ◽  
Colin Copeland ◽  
Andrew Lewis ◽  
...  

Author(s):  
Tomoyuki Hosaka ◽  
Taisuke Sugii ◽  
Eiji Ishii ◽  
Kazuhiro Oryoji ◽  
Yoshihiro Sukegawa

The improved fuel economy and low pollutant emissions are highly demanded for internal combustion engines. Gasoline Direct Injection (GDI) engine is the one of promising devices for highly efficient engine. However, GDI engines generally tend to emit more Particulate Matter (PM) than Port Fuel Injection (PFI) engine because the fuel sprayed from the injector can easily attach to the wall, which is the major origin of PM. Therefore, the precise analysis of the fuel/air mixture formation and the prediction of emissions are required. From the view of industrial use, Computational Fluid Dynamics (CFD) becomes a necessary tool for the various analyses including the fuel/air mixture formation, spray attachment on the cylinder wall, the in-cylinder turbulence formation, the combustion and emission etc. In our previous study, the flow and spray simulation in internal combustion engine has been conducted using OpenFOAM®, the open-source CFD toolbox. Since the engine involves the dynamic motion such as valve and piston, the morphing and mapping approach was employed. Furthermore, by virtue of open-source code, we have developed the methodology of the hybrid simulation from the internal nozzle flow to the fuel/air mixture in order to take into account detailed breakup process nearby injector nozzle. We expand the above research to the combustion simulation. For the combustion model, the Hyperbolic Tangent Approximation (HTA) model is adopted. The HTA model has a simple form of equation and one can easily implement; moreover, the HTA model has the following features: 1. capability of both laminar and turbulent flow, 2. the clearness of analytical derivation based on the functional approximation of the reaction progress variable distribution in a one-dimensional laminar flame. In the current study, the premixed flame is studied on a gasoline combustion engine. The simulations for in-cylinder engine are conducted with different Air/Fuel (A/F) ratio conditions, and the results are compared with the experimental results. The in-cylinder pressure agrees well with experimental results and the validity of the current methodology is confirmed.


Author(s):  
Gregory J. Thompson ◽  
Nigel N. Clark ◽  
Mridul Gautam ◽  
Daniel K. Carder ◽  
Sam George

Emissions from marine vessels are being scrutinized as a major contributor to the total particulate matter (TPM), oxides of sulfur (SOx), and oxides of nitrogen (NOx) environmental loading. Fuel sulfur control is the key to SOx reduction but NOx and PM production are primarily engine design dependent. Significant reductions in the emissions from on-road vehicles have been achieved in the last decade and emissions from these vehicles will be reduced by another order of magnitude in the next five years. These improvements have served to emphasize the need to reduce emissions from other mobile sources, including off-road equipment, locomotives, and marine vessels. Diesel-powered vessels of interest include ocean-going vessels with low- and medium-speed engines, as well as smaller vessels with medium- and high-speed engines. A recent study examined to use of intake water injection (WIS) and ultra low sulfur diesel (ULSD) fuel to reduce the emissions from a high-speed passenger ferry in southern California. One of the four Detroit Diesel 12V92 two-stroke, high-speed engines that power the ferry was instrumented to collect intake airflow rate, fuel flow rate, shaft torque, and shaft speed. Engine speed and shaft torque were uniquely linked for given vessel draft and prevailing wind and sea conditions. A raw exhaust gas sampling system was utilized to measure the concentration of NOx, carbon dioxide (CO2), and oxygen (O2), with a mini dilution tunnel sampling a slipstream from the raw exhaust was used to collect TPM on 70 mm filters. The emissions data were processed to yield brake-specific mass results. The emissions measurement system that was employed allowed for redundant data to be collected for quality assurance and quality control. To acquire the data, the ferry was operated at five different steady-state speeds. Three modes were executed in the open sea off Oceanside, CA, idle and harbor modes were also selected for the test matrix. Data have showed that the use of ULSD along with water injection (WIS) could significantly reduce the emissions of NOx and PM while not affecting fuel consumption or engine performance, when compared to baseline marine diesel fuel. The results showed that a normal 40% reduction in TPM was realized when switching from marine diesel fuel to ULSD. A small reduction in NOx was also shown between the marine fuel and the ULSD. The implementation of the WIS reduced NOx by 11% to 17%, depending upon the operating condition. With the WIS, TPM was reduced by a few percentage points, which was close to the confidence level of the measurements.


Sign in / Sign up

Export Citation Format

Share Document