Application of Hyperbolic Tangent Approximation Model to Gasoline Direct Injection Engine Simulation

Author(s):  
Tomoyuki Hosaka ◽  
Taisuke Sugii ◽  
Eiji Ishii ◽  
Kazuhiro Oryoji ◽  
Yoshihiro Sukegawa

The improved fuel economy and low pollutant emissions are highly demanded for internal combustion engines. Gasoline Direct Injection (GDI) engine is the one of promising devices for highly efficient engine. However, GDI engines generally tend to emit more Particulate Matter (PM) than Port Fuel Injection (PFI) engine because the fuel sprayed from the injector can easily attach to the wall, which is the major origin of PM. Therefore, the precise analysis of the fuel/air mixture formation and the prediction of emissions are required. From the view of industrial use, Computational Fluid Dynamics (CFD) becomes a necessary tool for the various analyses including the fuel/air mixture formation, spray attachment on the cylinder wall, the in-cylinder turbulence formation, the combustion and emission etc. In our previous study, the flow and spray simulation in internal combustion engine has been conducted using OpenFOAM®, the open-source CFD toolbox. Since the engine involves the dynamic motion such as valve and piston, the morphing and mapping approach was employed. Furthermore, by virtue of open-source code, we have developed the methodology of the hybrid simulation from the internal nozzle flow to the fuel/air mixture in order to take into account detailed breakup process nearby injector nozzle. We expand the above research to the combustion simulation. For the combustion model, the Hyperbolic Tangent Approximation (HTA) model is adopted. The HTA model has a simple form of equation and one can easily implement; moreover, the HTA model has the following features: 1. capability of both laminar and turbulent flow, 2. the clearness of analytical derivation based on the functional approximation of the reaction progress variable distribution in a one-dimensional laminar flame. In the current study, the premixed flame is studied on a gasoline combustion engine. The simulations for in-cylinder engine are conducted with different Air/Fuel (A/F) ratio conditions, and the results are compared with the experimental results. The in-cylinder pressure agrees well with experimental results and the validity of the current methodology is confirmed.

Author(s):  
Stephen A. Ciatti ◽  
Thomas Wallner ◽  
Henry Ng ◽  
William F. Stockhausen ◽  
Brad Boyer

Although hydrogen is considered one of the most promising future energy carriers, there are several challenges to achieving a “hydrogen economy,” including finding a practical, efficient, cost-effective end-use device. Using hydrogen as a fuel for internal combustion engines is seen as a bridging technology toward a large-scale hydrogen infrastructure. To facilitate high-efficiency, high-power-density use of hydrogen with near-zero emissions in an internal combustion engine, detailed analysis of the hydrogen combustion process is necessary. This paper presents thermodynamic results regarding engine performance and emissions behavior during investigations performed on a single-cylinder research engine fueled by pressurized gaseous hydrogen. Avoiding combustion anomalies is one of the necessary steps to further improve the hydrogen engine power output at high-load operation while, at the same time, reducing fuel consumption and emissions during part-load operation. The overall target of the investigations is an improved combustion concept especially designed for hydrogen-engine-powered vehicles. Future activities include performing optical imaging of hydrogen combustion by using an endoscope. We will also investigate supercharged external mixture formation, as well as hydrogen direct-injection operation.


1980 ◽  
Vol 194 (1) ◽  
pp. 157-169
Author(s):  
L. C. Hall ◽  
M. E. Saatci

This paper reports on a study into the feasibility of generating steam, using the exhaust gases of a reciprocating internal combustion engine, and expanding it in the cylinders of the engine to produce additional power without increasing the fuel consumption. The study was conducted in three stages; firstly an equivalent ideal thermodynamic cycle was analysed to examine the fundamental principles, secondly a computer simulation was carried out based on a particular engine, and thirdly an attempt was made to modify the engine and run it with steam injection. The results suggest that this proposal is thermodynamically sound and could in practice permit substantial gains in efficiency using relatively straightforward technology.


2021 ◽  
Author(s):  
Zhiyu Han

Simulation and Optimization of Internal Combustion Engines provides the fundamentals and up-to-date progress in multidimensional simulation and optimization of internal combustion engines. While it is impossible to include all the models in a single book, this book intends to introduce the pioneer and/or the often-used models and the physics behind them providing readers with ready-to-use knowledge. Key issues, useful modeling methodology and techniques, as well as instructive results, are discussed through examples. Readers will understand the fundamentals of these examples and be inspired to explore new ideas and means for better solutions in their studies and work. Topics include combustion basis of IC engines, mathematical descriptions of reactive flow with sprays, engine in-cylinder turbulence, fuel sprays, combustions and pollutant emissions, optimization of direct-injection gasoline engines, and optimization of diesel and alternative fuel engines.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1830 ◽  
Author(s):  
Moonchan Kim ◽  
Jungmo Oh ◽  
Changhee Lee

Compression ignition engines used as marine engines are the most efficient internal combustion engines. They are well-established products, and millions are already on the market. Water-in-MDO (marine diesel oil) emulsions are the best alternative fuel for compression ignition engines and can be utilised with the existing setup of 2.0 L automotive common rail direct injection (CRDI) engines. They have benefits for the simultaneous reduction of both NOx and smoke (black carbon). Furthermore, they have a significant impact on the improvement of combustion efficiency. Micro-explosions are the most important phenomenon of water-in-diesel emulsions inside an internal combustion engine chamber. They affect both the emission reduction and combustion efficiency improvements directly and indirectly in accordance with the brake mean effective pressure (BMEP) and rpm. Owing to the influence of micro-emulsions on the combustion and emissions of water-in-diesel emulsion fuel, the reduction ratios of NOx and smoke in a used engine are approximately 30% and 80%, respectively. The effect of the operating parameters on micro-emulsions is presented.


2019 ◽  
Vol 9 (22) ◽  
pp. 4842 ◽  
Author(s):  
Ho Lung Yip ◽  
Aleš Srna ◽  
Anthony Chun Yin Yuen ◽  
Sanghoon Kook ◽  
Robert A. Taylor ◽  
...  

A paradigm shift towards the utilization of carbon-neutral and low emission fuels is necessary in the internal combustion engine industry to fulfil the carbon emission goals and future legislation requirements in many countries. Hydrogen as an energy carrier and main fuel is a promising option due to its carbon-free content, wide flammability limits and fast flame speeds. For spark-ignited internal combustion engines, utilizing hydrogen direct injection has been proven to achieve high engine power output and efficiency with low emissions. This review provides an overview of the current development and understanding of hydrogen use in internal combustion engines that are usually spark ignited, under various engine operation modes and strategies. This paper then proceeds to outline the gaps in current knowledge, along with better potential strategies and technologies that could be adopted for hydrogen direct injection in the context of compression-ignition engine applications—topics that have not yet been extensively explored to date with hydrogen but have shown advantages with compressed natural gas.


2008 ◽  
Vol 132 (1) ◽  
pp. 3-16
Author(s):  
Jerzy MERKISZ ◽  
Marek WALIGÓRSKI

The article concerns the possibilities of use of the method being able to assess of the combustion process and its lack in internal combustion engines of railway traction vehicles, that bases on the use of vibration signal parameters. The paper includes the results of research conducted on the engine test bench with a single cylinder research and compression-ignition engine with direct injection, and tests for the engine of a diesel locomotive in the exploitation condition. Possibility of the vibration signal estimators application to the assessment of a combustion process lack in an internal combustion engine and a high reliability of combustion process diagnostics basing on the above method have been proved.


Author(s):  
Max K. Edney ◽  
Joseph S. Lamb ◽  
Matteo Spanu ◽  
Emily F. Smith ◽  
Elisabeth Steer ◽  
...  

<p>Clean and efficient internal combustion engine performance will play a significant role in the move to a decarbonized energy system. Currently, fuel deposit formation on engine components negatively impacts CO2 and pollutant emissions, where previous attempts at deposit characterization afforded non-diagnostic chemical assignments. Here, we uncover the identity and 3D spatial distribution of molecular species from gasoline, diesel injector and filter deposits with the 3D OrbiSIMS technique. Alkylbenzyl sulfonates, derived from lubricant oil contamination in the engine fuel cycle, were common to samples, we evidence transformation of the native sulfonate to longer chain species by reaction with fuel fragments in the gasoline deposit. Inorganic salts, identified in both diesel deposits, were prevalent throughout the injector deposits depth. We identified common polycyclic aromatic hydrocarbons up to C66H20, these were prevalent in the gasoline deposits lower depths. This work will enable deposit mitigation by unravelling their chemical composition, spatial distribution, and origins.</p>


Author(s):  
Xavier Tauzia ◽  
Pascal Chesse ◽  
Jean-François Hetet ◽  
Nicolas Thouvenel

During the last decades, pollutant emissions from internal combustion engines used for transportation have become a major concern. Today, not only steady state emissions but also emissions during transients are regulated and have to be studied in order to be reduced. In this paper, we describe a new methodology developed to measure the instantaneous level of gaseous emissions from a internal combustion engine during transients, using an analyzer initially designed for steady state operation. Moreover, a new phenomenological thermodynamical combustion model is proposed in order to compute emissions during transients. The results of these two methods are compared on various transients. The measurement method seems to give good results (except for hydrocarbon (HC) measurements), as long as the speed and load variations are not too fast. Otherwise, the frequency of the analyzer which was used becomes the limiting factor. The new combustion heat release developed to simulate transients, coupled with an existing two-zone model for emission calculations, leads to satisfactory results for CO2 and O2 concentrations and NOx emissions. The agreement with measurements is good for smooth transients and seems promising for faster dynamics. The initial goal was reached, although some improvements are still necessary concerning HC measurements and the fastest transients. These results could be helpful when trying to reduce the amount of pollutant emissions at the exhaust during transients, directly or with after treatment devices.


Author(s):  
Davide Tarsitano ◽  
Laura Mazzola ◽  
Federico Cheli ◽  
Ferdinando Mapelli

The use of road vehicles has always represented a major contribution to the growth of modern society: it facilitates goods and people mobility, meeting most of the daily needs and it represents a backbone for the development of world economy, (i.e. the industrial field). Nowadays, this mean of transportation, however, given the high number of vehicles on the roads, has a negative impact both on the environment and on the quality of human life. Moreover it leads to an increase in additional costs (i.e. the costs related to environment pollution, global warming and depletion of resources). Such a negative aspect is due to the fact that the drive systems are often characterized by high variability of the load, hence the propulsion system works in areas with low efficiencies and high pollutant emissions. In order to overcome these problems, and to allow the compliance of the road transport system with new European guidelines (i.e White paper, and Horizon 2020), it is necessary to develop innovative technologies able to: - increase the overall powertrain efficiency; - introduce a sustainable alternative fuels strategy including also the appropriate infrastructure; - reduce carbon emission through a decarbonisation approach; In this perspective, in recent years, the technology of electric and hybrid vehicles has been developed, and nowadays it has become a feasible solution in the context of means of transportation. Car/truck-makers and operators look at further developments and innovation in this field in order to optimise the existing solutions and reduce the production costs. The current solution for hybrid vehicles aims to couple a conventional engine with an electrical motor; these two propulsion system are coordinated by an opportune algorithm in order to let the conventional engine operate in its higher efficiency range. Hence the technology foresees the action of endothermic and electrical motors. It is then pivotal for the success of this transport the optimisation of the whole system (electrical and endothermic) in terms of efficiency, sizing and of the control algorithm that coordinate the two propulsion systems. For the modeling of the internal combustion engine conventional approaches, based on the numerical simulation of the combustion process, cannot be used because of their complexity in term of time needed for computing activity. For hybrid power train the general approach to simulated a drive cycle, that usually last at least a few minutes, is based on engine map approach [1–2]. The main burden to the described process is the identifications of maps of torque and consumption for the internal combustion engine, which are normally not predictable in detail, nor are provided by the manufacturers, but they can only be determined by means of experimental tests. Such a process can become extremely expensive and time consuming. Hence in this work the concept of virtual optimisation is introduced basing on the identification of torque and fuel consumption maps for internal combustion engines on analytical methods considering the similarities with engine of the same class. In this regard, a model of the system is developed based on the “Willans Line Method” approach, subsequently to a theoretical definition of the model, the identification of maps is carried out for two different engines (one diesel heavy-duty engine and one spark ignition engine) in order to consider the existing configurations of hybrid vehicles. Eventually the calculated maps are validated considering experimental data from existing experimental campaign. Providing the validity of the method and its usefulness in the hybrid vehicle design.


2020 ◽  
Author(s):  
Max K. Edney ◽  
Joseph S. Lamb ◽  
Matteo Spanu ◽  
Emily F. Smith ◽  
Elisabeth Steer ◽  
...  

<p>Clean and efficient internal combustion engine performance will play a significant role in the move to a decarbonized energy system. Currently, fuel deposit formation on engine components negatively impacts CO2 and pollutant emissions, where previous attempts at deposit characterization afforded non-diagnostic chemical assignments. Here, we uncover the identity and 3D spatial distribution of molecular species from gasoline, diesel injector and filter deposits with the 3D OrbiSIMS technique. Alkylbenzyl sulfonates, derived from lubricant oil contamination in the engine fuel cycle, were common to samples, we evidence transformation of the native sulfonate to longer chain species by reaction with fuel fragments in the gasoline deposit. Inorganic salts, identified in both diesel deposits, were prevalent throughout the injector deposits depth. We identified common polycyclic aromatic hydrocarbons up to C66H20, these were prevalent in the gasoline deposits lower depths. This work will enable deposit mitigation by unravelling their chemical composition, spatial distribution, and origins.</p>


Sign in / Sign up

Export Citation Format

Share Document