scholarly journals Impact of temporary emission reduction from a large-scale coal-fired power plant on air quality

2020 ◽  
Vol 5 ◽  
pp. 100056
Author(s):  
Zang-Ho Shon ◽  
Minsung Kang ◽  
Geehyeong Park ◽  
Minseok Bae
2020 ◽  
Vol 140 (6) ◽  
pp. 531-538
Author(s):  
Kotaro Nagaushi ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
Junji Tamura ◽  
Atsushi Sakahara ◽  
...  

2012 ◽  
Vol 608-609 ◽  
pp. 1120-1126 ◽  
Author(s):  
De Shun Wang ◽  
Bo Yang ◽  
Lian Tao Ji

A static frequency converter start-up control strategy for pumped-storage power unit is presented. And rotor position detecting without position sensor is realized according to voltage and magnetism equations of ideal synchronous motor mathematics model. The mechanism and implementation method of initial rotor position determination and rotor position estimation under low frequency without position sensor are expounded and validated by simulations. Based on the mentioned control strategy, first set of a static frequency converter start-up device in China for large-scale pumped-storage unit is developed, which is applied to start-up control test in the 90 MW generator/motor of Panjiakou Pumped-storage Power Plant. Test results show that rotor position detecting, pulse commutation, natural commutation, and unit synchronous procedure control of static start-up are all proved. The outcomes have been applied in running equipment, which proves the feasibility of mentioned method.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 811
Author(s):  
Yaqin Hu ◽  
Yusheng Shi

The concentration of atmospheric carbon dioxide (CO2) has increased rapidly worldwide, aggravating the global greenhouse effect, and coal-fired power plants are one of the biggest contributors of greenhouse gas emissions in China. However, efficient methods that can quantify CO2 emissions from individual coal-fired power plants with high accuracy are needed. In this study, we estimated the CO2 emissions of large-scale coal-fired power plants using Orbiting Carbon Observatory-2 (OCO-2) satellite data based on remote sensing inversions and bottom-up methods. First, we mapped the distribution of coal-fired power plants, displaying the total installed capacity, and identified two appropriate targets, the Waigaoqiao and Qinbei power plants in Shanghai and Henan, respectively. Then, an improved Gaussian plume model method was applied for CO2 emission estimations, with input parameters including the geographic coordinates of point sources, wind vectors from the atmospheric reanalysis of the global climate, and OCO-2 observations. The application of the Gaussian model was improved by using wind data with higher temporal and spatial resolutions, employing the physically based unit conversion method, and interpolating OCO-2 observations into different resolutions. Consequently, CO2 emissions were estimated to be 23.06 ± 2.82 (95% CI) Mt/yr using the Gaussian model and 16.28 Mt/yr using the bottom-up method for the Waigaoqiao Power Plant, and 14.58 ± 3.37 (95% CI) and 14.08 Mt/yr for the Qinbei Power Plant, respectively. These estimates were compared with three standard databases for validation: the Carbon Monitoring for Action database, the China coal-fired Power Plant Emissions Database, and the Carbon Brief database. The comparison found that previous emission inventories spanning different time frames might have overestimated the CO2 emissions of one of two Chinese power plants on the two days that the measurements were made. Our study contributes to quantifying CO2 emissions from point sources and helps in advancing satellite-based monitoring techniques of emission sources in the future; this helps in reducing errors due to human intervention in bottom-up statistical methods.


2021 ◽  
Vol 7 (1) ◽  
pp. 47-54
Author(s):  
Jinjie Lin ◽  
Yong Li ◽  
Sijia Hu ◽  
Qianyi Liu ◽  
Jing Zhang ◽  
...  

Author(s):  
Zhiyuan Wang ◽  
Xiaoyi Shi ◽  
Chunhua Pan ◽  
Sisi Wang

Exploring the relationship between environmental air quality (EAQ) and climatic conditions on a large scale can help better understand the main distribution characteristics and the mechanisms of EAQ in China, which is significant for the implementation of policies of joint prevention and control of regional air pollution. In this study, we used the concentrations of six conventional air pollutants, i.e., carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), fine particulate matter (PM2.5), coarse particulate matter (PM10), and ozone (O3), derived from about 1300 monitoring sites in eastern China (EC) from January 2015 to December 2018. Exploiting the grading concentration limit (GB3095-2012) of various pollutants in China, we also calculated the monthly average air quality index (AQI) in EC. The results show that, generally, the EAQ has improved in all seasons in EC from 2015 to 2018. In particular, the concentrations of conventional air pollutants, such as CO, SO2, and NO2, have been decreasing year by year. However, the concentrations of particulate matter, such as PM2.5 and PM10, have changed little, and the O3 concentration increased from 2015 to 2018. Empirical mode decomposition (EOF) was used to analyze the major patterns of AQI in EC. The first mode (EOF1) was characterized by a uniform structure in AQI over EC. These phenomena are due to the precipitation variability associated with the East Asian summer monsoon (EASM), referred to as the “summer–winter” pattern. The second EOF mode (EOF2) showed that the AQI over EC is a north–south dipole pattern, which is bound by the Qinling Mountains and Huaihe River (about 35° N). The EOF2 is mainly caused by seasonal variations of the mixed concentration of PM2.5 and O3. Associated with EOF2, the Mongolia–Siberian High influences the AQI variation over northern EC by dominating the low-level winds (10 m and 850 hPa) in autumn and winter, and precipitation affects the AQI variation over southern EC in spring and summer.


Sign in / Sign up

Export Citation Format

Share Document