Using spatial variations of grain size to reveal sediment transport in the Kumtagh Sand Sea, Northwest China

2020 ◽  
Vol 46 ◽  
pp. 100599
Author(s):  
Aimin Liang ◽  
Zhibao Dong ◽  
Jianjun Qu ◽  
Zhizhu Su ◽  
Bo Wu ◽  
...  
2014 ◽  
Vol 93 ◽  
pp. 28-32 ◽  
Author(s):  
Maria Balsinha ◽  
Carlos Fernandes ◽  
Anabela Oliveira ◽  
Aurora Rodrigues ◽  
Rui Taborda

2014 ◽  
Vol 10 (1) ◽  
pp. 91-106 ◽  
Author(s):  
E. Dietze ◽  
F. Maussion ◽  
M. Ahlborn ◽  
B. Diekmann ◽  
K. Hartmann ◽  
...  

Abstract. Grain-size distributions offer powerful proxies of past environmental conditions that are related to sediment sorting processes. However, they are often of multimodal character because sediments can get mixed during deposition. To facilitate the use of grain size as palaeoenvironmental proxy, this study aims to distinguish the main detrital processes that contribute to lacustrine sedimentation across the Tibetan Plateau using grain-size end-member modelling analysis. Between three and five robust grain-size end-member subpopulations were distinguished at different sites from similarly–likely end-member model runs. Their main modes were grouped and linked to common sediment transport and depositional processes that can be associated with contemporary Tibetan climate (precipitation patterns and lake ice phenology, gridded wind and shear stress data from the High Asia Reanalysis) and local catchment configurations. The coarse sands and clays with grain-size modes >250 μm and <2 μm were probably transported by fluvial processes. Aeolian sands (~200 μm) and coarse local dust (~60 μm), transported by saltation and in near-surface suspension clouds, are probably related to occasional westerly storms in winter and spring. Coarse regional dust with modes ~25 μm may derive from near-by sources that keep in longer term suspension. The continuous background dust is differentiated into two robust end members (modes: 5–10 and 2–5 μm) that may represent different sources, wind directions and/or sediment trapping dynamics from long-range, upper-level westerly and episodic northerly wind transport. According to this study grain-size end members of only fluvial origin contribute small amounts to mean Tibetan lake sedimentation (19± 5%), whereas local to regional aeolian transport and background dust deposition dominate the clastic sedimentation in Tibetan lakes (contributions: 42 ± 14% and 51 ± 11%). However, fluvial and alluvial reworking of aeolian material from nearby slopes during summer seems to limit end-member interpretation and should be crosschecked with other proxy information. If not considered as a stand-alone proxy, a high transferability to other regions and sediment archives allows helpful reconstructions of past sedimentation history.


2021 ◽  
Author(s):  
Yu Wang ◽  
Bao-long Li ◽  
Juan-juan Liu ◽  
Qi Feng ◽  
Wei Liu ◽  
...  

Abstract Spatial variations in grain-size parameters can reflect river sediment transport patterns and depositional dynamics. Therefore, 22 surficial sediment samples taken from the Heihe River and its cascade reservoirs were analyzed to better understand the impact of cascade reservoir construction on sediment transport patterns in inland rivers in China. The results showed that the longitudinal distribution of sediment grain size in the Heihe River was significantly affected by the influence of the cascade reservoirs. The grain size of the reservoir sediments within the cascade reservoir system was much lower than that of sediments in the natural river section, and the sediments in the natural river were well sorted, exhibiting leptokurtosis and positive or very positive skew. The lower reaches of the dammed river experienced strong erosion, and the grains of the bed sediments were coarse and poorly sorted; the grain-size distributions were more positively skewed and exhibited leptokurtosis. The backwater zone of the reservoir was influenced by both backwater and released water, and the sediment grain size was between the grain size of the natural river and that of the lower reaches of the dam; these sediments were moderately well sorted and had a positively skewed, leptokurtic grain-size distribution. Sedimentary environmental analysis revealed that the characteristics of the sediment grain size in an upstream tributary of the Heihe River were more influenced by source material than by hydrodynamic conditions, while the grain-size characteristics of the mainstream sediments were controlled mainly by hydrodynamic conditions.


2014 ◽  
Vol 6 (1) ◽  
Author(s):  
Septriono Hari Nugroho ◽  
Abdul Basit

<p>An integrated study of sediment distribution was conducted in Weda Bay, Northern Maluku to provide general information on transportation and deposition process based on sediment grain size distribution. The study was conducted during the Weda Bay Expedition using the “Baruna Jaya VII” research vessel in March 13<sup>th</sup> –22<sup>th</sup> 2013. Sieving method (granulometric) was used to analyze the grain size. The results indicated that in general the pattern of sea floor sediment distribution was dominated by clay – sand grain-sized. The current speed influenced the sediment transport, deposition, and distribution.  Larger fractions of sediment were quickly settled on the sea floor due to stronger currents around Southern area (Widi islands), meanwhile the lesser fractions of the transported away into other places with weaker currents conditions.</p> <p>Keywords: current, the Weda Bay expedition, granulometric, grain size, sediment distribution</p>


1984 ◽  
Vol 1 (19) ◽  
pp. 91 ◽  
Author(s):  
Ichiro Deguchi ◽  
Toru Sawaragi

Time and spatial variations of sediment concentration of both bed load and suspended load in the process of two-dimensional beach deformation were investigated experimentally. At the same time, the relation between the velocities of water-particle and sediment migration was analyzed theoretically. By using those results,a net rate of on-offshore sediment_ transport in the process of two-dimensional model beach deformation qf was calculated on the basis of sediment flux. It is found that Qf coincides fairly well with .the net rate of on-offshore sediment transport calculated from the change of water depth.


1991 ◽  
Vol 17 (1) ◽  
pp. 23-46 ◽  
Author(s):  
Leonardo Leoni ◽  
Franco Sartori ◽  
Maurizio Saitta ◽  
Vincenzo Damiani ◽  
Ornella Ferretti ◽  
...  

2010 ◽  
Vol 649 ◽  
pp. 287-328 ◽  
Author(s):  
ANTOINE FOURRIÈRE ◽  
PHILIPPE CLAUDIN ◽  
BRUNO ANDREOTTI

It is widely accepted that both ripples and dunes form in rivers by primary linear instability; the wavelength of the former scaling on the grain size and that of the latter being controlled by the water depth. We revisit here this problem in a theoretical framework that allows to give a clear picture of the instability in terms of dynamical mechanisms. A multi-scale description of the problem is proposed, in which the details of the different mechanisms controlling sediment transport are encoded into three quantities: the saturated flux, the saturation length and the threshold shear stress. Hydrodynamics is linearized with respect to the bedform aspect ratio. We show that the phase shift of the basal shear stress with respect to the topography, responsible for the formation of bedforms, appears in an inner boundary layer where shear stress and pressure gradients balance. This phase shift is sensitive to the presence of the free surface, and the related effects can be interpreted in terms of standing gravity waves excited by topography. The basal shear stress is dominated by this finite depth effect in two ranges of wavelength: when the wavelength is large compared to the flow depth, so that the inner layer extends throughout the flow, and in the resonant conditions, when the downstream material velocity balances the upstream wave propagation. Performing the linear stability analysis of a flat sand bed, the relation between the wavelength at which ripples form and the flux saturation length is quantitatively derived. It explains the discrepancy between measured initial wavelengths and predictions that do not take this lag between flow velocity and sediment transport into account. Experimental data are used to determine the saturation length as a function of grain size and shear velocity. Taking the free surface into account, we show that the excitation of standing waves has a stabilizing effect, independent of the details of the flow and sediment transport models. Consequently, the shape of the dispersion relation obtained from the linear stability analysis of a flat sand bed is such that dunes cannot result from a primary linear instability. We present the results of field experiments performed in the natural sandy Leyre river, which show the formation of ripples by a linear instability and the formation of dunes by a nonlinear pattern coarsening limited by the free surface. Finally, we show that mega-dunes form when the sand bed presents heterogeneities such as a wide distribution of grain sizes.


2018 ◽  
Vol 22 (1) ◽  
pp. 767-787 ◽  
Author(s):  
Teodor Petrut ◽  
Thomas Geay ◽  
Cédric Gervaise ◽  
Philippe Belleudy ◽  
Sebastien Zanker

Abstract. Monitoring sediment transport processes in rivers is of particular interest to engineers and scientists to assess the stability of rivers and hydraulic structures. Various methods for sediment transport process description were proposed using conventional or surrogate measurement techniques. This paper addresses the topic of the passive acoustic monitoring of bedload transport in rivers and especially the estimation of the bedload grain size distribution from self-generated noise. It discusses the feasibility of linking the acoustic signal spectrum shape to bedload grain sizes involved in elastic impacts with the river bed treated as a massive slab. Bedload grain size distribution is estimated by a regularized algebraic inversion scheme fed with the power spectrum density of river noise estimated from one hydrophone. The inversion methodology relies upon a physical model that predicts the acoustic field generated by the collision between rigid bodies. Here we proposed an analytic model of the acoustic energy spectrum generated by the impacts between a sphere and a slab. The proposed model computes the power spectral density of bedload noise using a linear system of analytic energy spectra weighted by the grain size distribution. The algebraic system of equations is then solved by least square optimization and solution regularization methods. The result of inversion leads directly to the estimation of the bedload grain size distribution. The inversion method was applied to real acoustic data from passive acoustics experiments realized on the Isère River, in France. The inversion of in situ measured spectra reveals good estimations of grain size distribution, fairly close to what was estimated by physical sampling instruments. These results illustrate the potential of the hydrophone technique to be used as a standalone method that could ensure high spatial and temporal resolution measurements for sediment transport in rivers.


Sign in / Sign up

Export Citation Format

Share Document