Irrigation management with remote sensing: Evaluating irrigation requirement for maize under Mediterranean climate condition

2017 ◽  
Vol 184 ◽  
pp. 211-220 ◽  
Author(s):  
Célia Toureiro ◽  
Ricardo Serralheiro ◽  
Shakib Shahidian ◽  
Adélia Sousa
2021 ◽  
pp. 1-24
Author(s):  
Sobhan Mishra ◽  
Annie Maria Issac ◽  
Ronald Singh ◽  
Pokkuluri Venkat Raju ◽  
Venkateshwar Rao Vala

2021 ◽  
Vol 13 (11) ◽  
pp. 2088
Author(s):  
Carlos Quemada ◽  
José M. Pérez-Escudero ◽  
Ramón Gonzalo ◽  
Iñigo Ederra ◽  
Luis G. Santesteban ◽  
...  

This paper reviews the different remote sensing techniques found in the literature to monitor plant water status, allowing farmers to control the irrigation management and to avoid unnecessary periods of water shortage and a needless waste of valuable water. The scope of this paper covers a broad range of 77 references published between the years 1981 and 2021 and collected from different search web sites, especially Scopus. Among them, 74 references are research papers and the remaining three are review papers. The different collected approaches have been categorized according to the part of the plant subjected to measurement, that is, soil (12.2%), canopy (33.8%), leaves (35.1%) or trunk (18.9%). In addition to a brief summary of each study, the main monitoring technologies have been analyzed in this review. Concerning the presentation of the data, different results have been obtained. According to the year of publication, the number of published papers has increased exponentially over time, mainly due to the technological development over the last decades. The most common sensor is the radiometer, which is employed in 15 papers (20.3%), followed by continuous-wave (CW) spectroscopy (12.2%), camera (10.8%) and THz time-domain spectroscopy (TDS) (10.8%). Excluding two studies, the minimum coefficient of determination (R2) obtained in the references of this review is 0.64. This indicates the high degree of correlation between the estimated and measured data for the different technologies and monitoring methods. The five most frequent water indicators of this study are: normalized difference vegetation index (NDVI) (12.2%), backscattering coefficients (10.8%), spectral reflectance (8.1%), reflection coefficient (8.1%) and dielectric constant (8.1%).


2019 ◽  
Vol 11 (6) ◽  
pp. 705 ◽  
Author(s):  
Poolad Karimi ◽  
Bhembe Bongani ◽  
Megan Blatchford ◽  
Charlotte de Fraiture

Remote sensing techniques have been shown, in several studies, to be an extremely effective tool for assessing the performance of irrigated areas at various scales and diverse climatic regions across the world. Open access, ready-made, global ET products were utilized in this first-ever-countrywide irrigation performance assessment study. The study aimed at identifying ‘bright spots’, the highest performing sugarcane growers, and ‘hot spots’, or low performing sugarcane growers. Four remote sensing-derived irrigation performance indicators were applied to over 302 sugarcane growers; equity, adequacy, reliability and crop water productivity. The growers were segmented according to: (i) land holding size or grower scale (ii) management regime, (iii) location of the irrigation schemes and (iv) irrigation method. Five growing seasons, from June 2005 to October 2009, were investigated. The results show while the equity of water distribution is high across all management regimes and locations, adequacy and reliability of water needs improvement in several locations. Given the fact that, in general, water supply was not constrained during the study period, the observed issues with adequacy and reliability of irrigation in some of the schemes were mostly due to poor scheme and farm level water management practices. Sugarcane crop water productivity showed the highest variation among all the indicators, with Estate managed schemes having the highest CWP at 1.57 kg/m3 and the individual growers recording the lowest CWP at 1.14 kg/m3, nearly 30% less. Similarly center pivot systems showed to have the highest CWP at 1.63 kg/m3, which was 30% higher than the CWP in furrow systems. This study showcases the applicability of publicly available global remote sensing products for assessing performance of the irrigated crops at the local level in several aspects.


2019 ◽  
Author(s):  
◽  
Anh Thi Tuan Nguyen

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Economic as well as water shortage pressure on agricultural use of water has placed added emphasis on efficient irrigation management. Center pivot technology has made great improvement with variable rate irrigation (VRI) technology to vary water application spatially and temporally to maximize the economic and environmental return. Proper management of VRI systems depends on correctly matching the pivot application to specific field temporal and areal conditions. There is need for a tool to accurately and inexpensively define dynamic management zones, to sense within-field variability in real time, and control variable rate water application so that producers are more willing to adopt and utilize the advantages of VRI systems. This study included tests of the center pivot system uniformity performance in 2014 at Delta Research Center in Portageville, MO. The goal of this research was to develop MOPivot software with an algorithm to determine unique management areas under center pivot systems based on system design and limitations. The MOPivot tool automates prescriptions for VRI center pivot based on non-uniform water needs while avoiding potential runoff and deep percolation. The software was validated for use in real-time irrigation management in 2018 for VRI control system of a Valley 8000 center pivot planted to corn. The water balance model was used to manage irrigation scheduling. Field data, together with soil moisture sensor measurement of soil water content, were used to develop the regression model of remote sensing-based crop coefficient (Kc). Remote sensing vegetation index in conjunction with GDD and crop growth stages in regression models showed high correlation with Kc. Validation of those regression models was done using Centralia, MO, field data in 2016. The MOPivot successfully created prescriptions to match system capacity of the management zone based on system limitations for center pivot management. Along with GIS data sources, MOPivot effectively provides readily available graphical prescription maps, which can be edited and directly uploaded to a center pivot control panel. The modeled Kc compared well with FAO Kc. By combining GDD and crop growth in the models, these models would account for local weather conditions and stage of crop during growing season as time index in estimating Kc. These models with Fraction of growth (FrG) and cumulative growing degree days (cGDD) had a higher coefficient of efficiency, higher Nash-Sutcliffe coefficient of efficiency and higher Willmott index of agreement. Future work should include improvement in the MOPivot software with different crops and aerial remote sensing imagery to generate dynamic prescriptions during the season to support irrigation scheduling for real-time monitoring of field conditions.


Irriga ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 585-598
Author(s):  
Pedro Henrique Jandreice Magnoni ◽  
Cesar De Oliveira Ferreira Silva ◽  
Rodrigo Lilla Manzione

SENSORIAMENTO REMOTO APLICADO AO MANEJO DA IRRIGAÇÃO EM ÁREAS COM ESCASSEZ DE DADOS: ESTUDO DE CASO EM PIVÔ CENTRAL EM ITATINGA-SP*     PEDRO HENRIQUE JANDREICE MAGNONI1; CÉSAR DE OLIVEIRA FERREIRA SILVA1 E RODRIGO LILLA MANZIONE2   1 Departamento de Engenharia Rural, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista", Avenida Universitária, n° 3780, Altos do Paraíso, 18610-034, Botucatu, São Paulo, Brasil,  [email protected]; [email protected]. 2 Departamento de Engenharia de Biossistemas, Faculdade de Ciências e Engenharia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rua Domingos da Costa Lopes, 780, CEP 17602496, Tupã – SP, Brasil. E-mail: [email protected]. *Este artigo é proveniente das dissertações de mestrado dos dois primeiros autores.     1 RESUMO   Ferramentas baseadas em sensoriamento remoto possibilitam o monitoramento do balanço hídrico da água em diferentes resoluções espaciais e temporais. Ainda assim, modelos que exigem dados in-situ impossibilitam sua aplicação em áreas com escassez de dados. No sentido de lidar com esse desafio, o presente trabalho apresenta uma abordagem de escolha do momento de irrigar, pelo balanço hídrico da água no solo, baseada em estimativa da evapotranspiração real (ETA) obtida com o uso conjunto de imagens multiespectrais do sensor MSI/SENTINEL-2 e dados de uma estação meteorológica pública. A área de estudo foi um pivô central localizado no munícipio de Itatinga-SP. Para a tomada de decisão do momento de irrigar, com base em um manejo por lâmina de irrigação fixa, foi feita a interpolação da fração evapotranspirativa entre os dias com imagens disponíveis para obter a ETA nos dias sem imagens por meio do seu produto com a evapotranspiração de referência. Essa abordagem captou variações climáticas essenciais para a estimativa do balanço hídrico em dias sem imagem. Destaca-se nessa aplicação conjunta sua capacidade de ser realizada sem necessitar de parâmetros específicos da cultura, do microclima ou do relevo, tornando-se interessante para regiões com escassez de dados.   Palavras-chave:  evapotranspiração, momento de irrigar, agriwater.     MAGNONI, P. H. J.; SILVA, C. O. F.; MANZIONE, R. L. REMOTE SENSING APPLIED TO IRRIGATION MANAGEMENT IN AREAS WITH LACK OF DATA: A CASE STUDY IN A CENTRAL PIVOT IN ITATINGA-SP     2 ABSTRACT   Remote sensing-based tools allow the monitoring of water budgets over different spatial and temporal resolutions. Nevertheless, some models require in situ data, preventing their application in areas with a lack of data. To address this challenge, this work presents an approach for irrigation scheduling, based on soil water budget estimation using actual evapotranspiration (ETA) obtained using MSI/SENTINEL-2 multispectral images and data from a public meteorological station. The study area consisted of a central pivot located in the municipality of Itatinga-SP, Brazil. For decision-making of irrigation scheduling, considering a fixed irrigation rate, the evapotranspiration fraction was interpolated between the days with available images to obtain the ETA on the days without images using its product with the reference evapotranspiration. This approach captured essential climate variations for estimating the water budget on non-image days. Noteworthy in this joint application is its suitability to be performed not requiring crop-, microclimate- or relief-specific parameters, making it useful for regions with a lack of data.   Keywords: evapotranspiration, irrigation scheduling, agriwater.


Author(s):  
Élvis da S. Alves ◽  
Roberto Filgueiras ◽  
Lineu N. Rodrigues ◽  
Fernando F. da Cunha ◽  
Catariny C. Aleman

ABSTRACT In regions where the irrigated area is increasing and water availability is reduced, such as the West of the Bahia state, Brazil, the use of techniques that contribute to improving water use efficiency is paramount. One of the ways to improve irrigation is by improving the calculation of actual evapotranspiration (ETa), which among other factors is influenced by soil drying, so it is important to understand this relationship, which is usually accounted for in irrigation management models through the water stress coefficient (Ks). This study aimed to estimate the water stress coefficient (Ks) through information obtained via remote sensing, combined with field data. For this, a study was carried out in the municipality of São Desidério, an area located in western Bahia, using images of the Landsat-8 satellite. Ks was calculated by the relationship between crop evapotranspiration and ETa, calculated by the Simple Algorithm for Evapotranspiration Retrieving (SAFER). The Ks estimated by remote sensing showed, for the development and medium stages, average errors on the order of 5.50%. In the final stage of maize development, the errors obtained were of 23.2%.


Author(s):  
George Papadavid ◽  
Skevi Perdikou ◽  
Michalakis Hadjimitsis ◽  
Diofantos Hadjimitsis

Abstract Water allocation to crops has always been of great importance in the agricultural process. In this context, and under the current conditions, where Cyprus is facing a severe drought the last five years, the purpose of this study is basically to estimate the needed crop water requirements for supporting irrigation management and monitoring irrigation on a systematic basis for Cyprus using remote sensing techniques. The use of satellite images supported by ground measurements has provided quite accurate results. Intended purpose of this paper is to estimate the Evapotranspiration (ET) of specific crops which is the basis for irrigation scheduling and establish a procedure for monitoring and managing irrigation water over Cyprus, using remotely sensed data from Landsat TM/ ETM+ and a sound methodology used worldwide, the Surface Energy Balance Algorithm for Land (SEBAL).


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 874 ◽  
Author(s):  
Javier J. Cancela ◽  
Xesús P. González ◽  
Mar Vilanova ◽  
José M. Mirás-Avalos

This document intends to be a presentation of the Special Issue “Water Management Using Drones and Satellites in Agriculture”. The objective of this Special Issue is to provide an overview of recent advances in the methodology of using remote sensing techniques for managing water in agricultural systems. Its eight peer-reviewed articles focus on three topics: new equipment for characterizing water bodies, development of satellite-based technologies for determining crop water requirements in order to enhance irrigation efficiency, and monitoring crop water status through proximal and remote sensing. Overall, these contributions explore new solutions for improving irrigation management and an efficient assessment of crop water needs, being of great value for both researchers and advisors.


2018 ◽  
Vol 61 (2) ◽  
pp. 533-548 ◽  
Author(s):  
J. Burdette Barker ◽  
Christopher M. U. Neale ◽  
Derek M. Heeren ◽  
Andrew E. Suyker

Abstract. Accurate generation of spatial soil water maps is useful for many types of irrigation management. A hybrid remote sensing evapotranspiration (ET) model combining reflectance-based basal crop coefficients (Kcbrf) and a two-source energy balance (TSEB) model was modified and validated for use in real-time irrigation management. We modeled spatial ET for maize and soybean fields in eastern Nebraska for the 2011-2013 growing seasons. We used Landsat 5, 7, and 8 imagery as remote sensing inputs. In the TSEB, we used the Priestly-Taylor (PT) approximation for canopy latent heat flux, as in the original model formulations. We also used the Penman-Monteith (PM) approximation for comparison. We compared energy balance fluxes and computed ET with measurements from three eddy covariance systems within the study area. Net radiation was underestimated by the model when data from a local weather station were used as input, with mean bias error (MBE) of -33.8 to -40.9 W m-2. The measured incident solar radiation appeared to be biased low. The net radiation model performed more satisfactorily when data from the eddy covariance flux towers were input into the model, with MBE of 5.3 to 11.2 W m-2. We removed bias in the daily energy balance ET using a dimensionless multiplier that ranged from 0.89 to 0.99. The bias-corrected TSEB ET, using weather data from a local weather station and with local ground data in thermal infrared imagery corrections, had MBE = 0.09 mm d-1 (RMSE = 1.49 mm d-1) for PM and MBE = 0.04 mm d-1 (RMSE = 1.18 mm d-1) for PT. The hybrid model used statistical interpolation to combine the two ET estimates. We computed weighting factors for statistical interpolation to be 0.37 to 0.50 for the PM method and 0.56 to 0.64 for the PT method. Provisions were added to the model, including a real-time crop coefficient methodology, which allowed seasonal crop coefficients to be computed with relatively few remote sensing images. This methodology performed well when compared to basal crop coefficients computed using a full season of input imagery. Water balance ET compared favorably with the eddy covariance data after incorporating the TSEB ET. For a validation dataset, the magnitude of MBE decreased from -0.86 mm d-1 (RMSE = 1.37 mm d-1) for the Kcbrf alone to -0.45 mm d-1 (RMSE = 0.98 mm d-1) and -0.39 mm d-1 (RMSE = 0.95 mm d-1) with incorporation of the TSEB ET using the PM and PT methods, respectively. However, the magnitudes of MBE and RMSE were increased for a running average of daily computations in the full May-October periods. The hybrid model did not necessarily result in improved model performance. However, the water balance model is adaptable for real-time irrigation scheduling and may be combined with forecasted reference ET, although the low temporal frequency of satellite imagery is expected to be a challenge in real-time irrigation management. Keywords: Center-pivot irrigation, ET estimation methods, Evapotranspiration, Irrigation scheduling, Irrigation water balance, Model validation, Variable-rate irrigation.


Sign in / Sign up

Export Citation Format

Share Document