Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China

2021 ◽  
Vol 247 ◽  
pp. 106738
Author(s):  
Zheng Che ◽  
Jun Wang ◽  
Jiusheng Li
2013 ◽  
Vol 32 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Zaimin Wang ◽  
Menggui Jin ◽  
Jirka Šimůnek ◽  
Martinus Th. van Genuchten

Author(s):  
Songrui Ning ◽  
An Yan ◽  
Beibei Zhou ◽  
Quanjiu Wang

Abstract Predicting the impacts of the irrigation amount (IA), water salinity (WS), and antecedent soil salinity (AS) on soil salinization, the crop yield, and water productivities (WPs) are important for precision agriculture. We used a calibrated HYDRUS − 2D model coupled with a validated crop water production function to quantitatively determine the response of a soil − cotton system to three factors (IA, WS, and AS) in 30 scenarios under film mulched drip irrigation. These scenarios included five IAs, two ASs, and three WSs. Under the same IA and WS, the transpiration, evapotranspiration, yield, and WPs were lower, whereas the evaporation, drainage, soil water storage, and leached salt were higher under higher AS (over the salt tolerance threshold of cotton) scenarios. Under lower AS scenarios, desalination processes (20.2 to 166.8 g m−2) occurred in freshwater (0.38 dS m−1) irrigation scenarios and salt accumulated (425.8 to 1,442.4 g m−2) in saline water (3.10 and 7.42 dS m−1) irrigation scenarios. Desalination processes (2,273.4 to 4,692 g m−2) occurred in the higher AS scenarios. Salinity risk warning should be the focus for cotton fields with lower AS and saline water irrigation. Our results may help to identify the salinity risk to support sustainable cotton production in Xinjiang.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1225 ◽  
Author(s):  
Zilong Guan ◽  
Zhifeng Jia ◽  
Zhiqiang Zhao ◽  
Qiying You

Mulched drip irrigation has been widely used in agricultural planting in arid and semi-arid regions. The dynamics and distribution of soil salinity under mulched drip irrigation greatly affect crop growth and yield. However, there are still different views on the distribution and dynamics of soil salinity under long-term mulched drip irrigation due to complex factors (climate, groundwater, irrigation, and soil). Therefore, the soil salinity of newly reclaimed salt wasteland was monitored for 9 years (2008–2016), and the effects of soil water on soil salinity distribution under mulched drip irrigation have also been explored. The results indicated that the soil salinity decreased sharply in 3–4 years of implementation of mulched drip irrigation, and then began to fluctuate to different degrees and showed slight re-accumulation. During the growth period, soil salinity was relatively high at pre-sowing, and after a period of decline soil salinity tends to increase in the late harvest period. The vertical distribution of soil texture had a significant effect on the distribution of soil salinity. Salt accumulated near the soil layer transiting from coarse soil to fine soil. After a single irrigation, the soil water content in the 30–70 cm layer under the cotton plant undergoes a ‘high–low–high’ change pattern, and the soil salt firstly moved to the deep layer (below 70 cm), and then showed upward migration tendency with the weakening of irrigation water infiltration. The results may contribute to the scientific extension of mulched drip irrigation and the farmland management under long-term mulched drip irrigation.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1127
Author(s):  
Wenhao Li ◽  
Zhenhua Wang ◽  
Jinzhu Zhang ◽  
Ningning Liu

The lowering of salt content in the field, especially in arid areas, after consecutive application of mulched drip irrigation (MDI) is of vital importance for sustainable cotton plantation. To elucidate the effects of long-term MDI on soil properties and cotton growth, this paper systematically monitored the soil salinity, ion concentrations and the yield of cotton in the field using MDI consecutively for six years in a typical oasis in Xinjiang, China. The results showed that MDI could significantly change salt distribution in the cotton field. During the six years tested, the soil salt content using MDI declined fast at first, and then the decline rate gradually decreased. In the 1st and 2nd year, the average salt content within 0–100 cm soil layer was larger than 20 g kg−1, which belonging to the saline soil. Then the salt content decreased to 10–20 g kg−1 in the 3rd and 4th year, and the cotton field declined to heavily saline soil. After 5 years of MDI, the soil turned to non-salinized. The Cl− and SO42− equivalence ratio (CSER) also decreased with the increase of application years of MDI. Saline-alkaline land developed from chloride-sulphate solonchak (0.2 < CSER < 1) into sulphate solonchak (CSER < 0.2) after 6 years of MDI. The survival rate of the cotton increased from 1.48% (1 year of MDI) to 76.3% (6 years of MDI), and the yield increased from 72.43 kg ha−1 to 4515.48 kg ha−1. When the average CSER, SAR and the soil salinity in 0–140 cm soil layer decreased to 0.60, 0.98 (mol kg−1)0.5 and 6.25 g kg−1, farmers can achieve a balance between income and expenditure. Moreover, when CSER, SAR, and the soil salinity continuously decreased to 0.44, 0.69 (mol kg−1)0.5 and 0.77 g kg−1, the cotton yield will exceed the average production level of cotton in Xinjiang. Under the current irrigation schedule in the oasis irrigation area, the soil salinity and groundwater level after applying MDI could be conducive to cotton growth. However, this situation had also caused a waste of nearly 200 mm of water resources. Therefore, authors suggested that further research on water-saving irrigation systems suitable for different soil conditions should be carried out, and also the differential quota management in production practice should be adopted.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1532
Author(s):  
Zeyi Wang ◽  
Hengjia Zhang ◽  
Yucai Wang ◽  
Chenli Zhou

Limited water resources and low water productivity limit the sustainable development of agriculture in northwest China. In this study, drip irrigation under plastic film was used to achieve an optimal water deficit irrigation (WDI) scheme for the cultivation of indigowoad root (Isatis tinctoria L.). Field water control experiments were conducted in 2016 and 2017. Evaluation of WDI schemes was carried out by considering five indices: water consumption, yield, water use efficiency (WUE), indigo, and (R,S)-goitrin. To enhance the reliability of results, the analytic hierarchy process (AHP) and entropy weight method (EWM) were adopted to calculate the combined weight of the evaluation index. Finally, an improved technique for order of preference by similarity to ideal solution (TOPSIS) that integrated AHP–EWM weights was used to construct a unified, comprehensive evaluation model of indigowoad root under mulched drip irrigation that would produce high yield while saving water. The evaluation results indicated that mild WD (specifically, the V1G1 treatment) was continuously exerted during the vegetative and fleshy root growth periods, which enhanced the WUE and improved the quality of indigowoad root to a certain extent without significantly reducing the yield. These results provide a scientific basis for irrigation of indigowoad in northwest China and other areas with a similar environment.


Sign in / Sign up

Export Citation Format

Share Document