scholarly journals Modeling salinity risk response to irrigation practices for cotton production under film mulched drip irrigation in Xinjiang

Author(s):  
Songrui Ning ◽  
An Yan ◽  
Beibei Zhou ◽  
Quanjiu Wang

Abstract Predicting the impacts of the irrigation amount (IA), water salinity (WS), and antecedent soil salinity (AS) on soil salinization, the crop yield, and water productivities (WPs) are important for precision agriculture. We used a calibrated HYDRUS − 2D model coupled with a validated crop water production function to quantitatively determine the response of a soil − cotton system to three factors (IA, WS, and AS) in 30 scenarios under film mulched drip irrigation. These scenarios included five IAs, two ASs, and three WSs. Under the same IA and WS, the transpiration, evapotranspiration, yield, and WPs were lower, whereas the evaporation, drainage, soil water storage, and leached salt were higher under higher AS (over the salt tolerance threshold of cotton) scenarios. Under lower AS scenarios, desalination processes (20.2 to 166.8 g m−2) occurred in freshwater (0.38 dS m−1) irrigation scenarios and salt accumulated (425.8 to 1,442.4 g m−2) in saline water (3.10 and 7.42 dS m−1) irrigation scenarios. Desalination processes (2,273.4 to 4,692 g m−2) occurred in the higher AS scenarios. Salinity risk warning should be the focus for cotton fields with lower AS and saline water irrigation. Our results may help to identify the salinity risk to support sustainable cotton production in Xinjiang.

Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1693
Author(s):  
Jingang Li ◽  
Jing Chen ◽  
Zhongyi Qu ◽  
Shaoli Wang ◽  
Pingru He ◽  
...  

Saline water irrigation has become extremely important in arid and semi-arid areas in northwestern China. To study the effect of alternating irrigation models on the soil nutrients, soil salts, and yield of tomatoes with fresh water (total dissolved solids of 0.50 g·L−1) and saline water (total dissolved solids of 3.01 g·L−1), a two-year field experiment was carried out for tomatoes in the Hetao Irrigation District (HID), containing six drip irrigation models: T1 (all freshwater irrigation), T2 (saline water used in the seedling and flowering stages; fresh water in the fruit-set and breaker stages), T3 (saline water in the flowering and fruit-set stages; fresh water in the seedling and breaker stages), T4 (saline water in the fruit-set and breaker stages; fresh water in the seedling and flowering stages), T5 (saline water in the flowering and breaker stages; fresh water in the seedling and fruit-set stages), T6 (saline water in the seedling and fruit-set stages; fresh water in the flowering and breaker stages). The study found that saline water irrigation tends to have a positive effect on soil total nitrogen and a negative influence on soil total phosphorus at each growth stage of the tomato. Soil Na+, Mg2+, Ca2+, K+, and Cl− increased over the growth period, soil HCO3− decreased gradually by growth stage, and the salt ions increased with the amount of saline water applied in alternating irrigation. Though the soil salt accumulated in all experimentally designed alternating irrigation models, soil alkalization did not occur in the tomato root zone under the soil matric potential threshold of −25 kPa. The utilization of saline water resulted in about a 1.9–18.2% decline in fruit yield, but the total soluble solids, lycopene, and sugar in the tomato fruits increased. Ultimately, drip irrigation with fresh water at the seedling to flowering stages and saline water at the fruit-set to breaker stages was suggested for tomato cultivation in HID.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 457 ◽  
Author(s):  
Mingyi Huang ◽  
Zhanyu Zhang ◽  
Yaming Zhai ◽  
Peirong Lu ◽  
Chengli Zhu

Use of saline water for irrigation is essential to mitigate increasing agricultural water demands in arid and semi-arid regions. The objective of this study is to address the potential of using straw biochar as a soil amendment to promote wheat production under saline water irrigation. A field experiment was conducted in a clay loam soil from eastern China during 2016/2017 and 2017/2018 winter wheat season. There were five treatments: freshwater irrigation (0.3 dS m−1), saline water irrigation (10 dS m−1), saline water irrigation (10 dS m−1) combined with biochar of 10, 20, 30 t ha−1. Saline water irrigation alone caused soil salinization and decreased wheat growth and yield. The incorporation of biochar decreased soil bulk density by 5.5%–11.6% and increased permeability by 35.4%–49.5%, and improved soil nutrient status. Biochar also reduced soil sodium adsorption ratio by 25.7%–32.6% under saline water irrigation. Furthermore, biochar alleviated salt stress by maintaining higher leaf relative water content and lower Na+/K+ ratio, and further enhanced photosynthesis and relieved leaf senescence during reproductive stages, leading to better grain formation. Compared to saline water irrigation alone, biochar application of 10 and 20 t ha−1 significantly increased wheat grain yield by 8.6 and 8.4%, respectively. High dose of biochar might increase soil salinity and limit N availability. In the study, biochar amendment at 10 t ha−1 would be a proper practice at least over two years to facilitate saline water irrigation for wheat production. Long-term studies are recommended to advance the understanding of the sustainable use of straw biochar.


2021 ◽  
Vol 80 (15) ◽  
Author(s):  
Lukman A. Soboyejo ◽  
Beatrice M. S. Giambastiani ◽  
Mario Molducci ◽  
Marco Antonellini

AbstractThe low-lying coastal basins of Ravenna (Italy) are at or below mean sea level and currently undergoing land subsidence, which exposes the basins to frequent inundation and groundwater and soil salinization. The surface water drainage becomes necessary to lower the water table head and further prevent flooding and waterlogging. The study examines the evolution of drainage apropos to climate change and land subsidence in the three main Ravenna coastal basins. Our findings show that the evolution of drainage is influenced by land subsidence, climate change variability, droughts, vertical seepage, and local water management. Land subsidence causes an increase in upward-directed vertical seepage of saline water through the shallow unconfined aquifer into the drainage channels of the coastal basins, thus leading to an increase in drainage through time. At a seasonal timescale, the rate of pumping depends on antecedent rainfall and soil–water storage. The warming extremes indices, specifically drought indices, show to be more significant than rainfall indices trends to monitor drainage evolution. Drought indices permit easy comparison of dryness or wetness severity with drainage evolution along their time scale. The co-occurring anthropogenic and natural factors involving in the increasing drainage rate will affect decadal and seasonal water management policies in the area. The implications of increasing drainage rates, long periods of drought with limited rainfall, and increasing temperature will further worsen freshwater availability in this coastal area already experiencing soil and water salinization. However, drainage of this low-lying territory has effectively mitigated rising water tables and avoided flooding. Our study has shown that each coastal basin behaves differently in terms of sensitivity to land subsidence and climate extremes. Therefore, when using drainage data time series for water management purposes, one should account for past management practices and for the specific sensitivity of each basin to external factors.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 752
Author(s):  
Li ◽  
Qu ◽  
Chen ◽  
Yang ◽  
Huang

A field experiment was conducted to test the suitability of growing sunflower undermulched drip irrigation with saline water in the HID (Hetao Irrigation District), North China. Theexperiment included five planting densities in which the plant spacing was 30, 35, 40, 45, and 50 cmwith the same spacing (50 cm) between rows. The results indicated that mulched drip irrigationwith saline water was more water‐saving than traditional ground irrigation using fresh water, whilethe irrigation quota increased with the increase of planting density. Little difference of soilsalinization was found for the treatments in the 50–100 cm soil layer, which indicated that additionalmeasures should be taken for salt balance with saline water irrigation. The height and leaf area index(LAI) of sunflower increased in response to the increase of plant density, and the head dry mattertransferred to the stem at plant densities higher than 47,619 plants/hm2. Though the grain weightand 1000‐seed weight decreased with increasing plant density, the achene yield and biomassproduction increased. This research suggests that a plant spacing of 35 cm with 50 cm of row spacingis more suitable for sunflower mulched drip irrigation with saline water at concentrations of 3.0g∙L−1.


2010 ◽  
Vol 26 (2) ◽  
pp. 255-260
Author(s):  
Jian-guo ZHANG ◽  
Xin-wen XU ◽  
Jia-qiang LEI ◽  
Hai-feng WANG ◽  
Sheng-yu LI

Sign in / Sign up

Export Citation Format

Share Document