scholarly journals 605TiP Targeting anti-cancer drug resistance in gastro-intestinal cancer: Inhibition of the SRPK1 kinase and degradation of the ABCG2 drug efflux pump

2020 ◽  
Vol 31 ◽  
pp. S503-S504
Author(s):  
M. Ladekarl ◽  
J.H.V. Schou ◽  
N.L. Roest ◽  
J. Stenvang ◽  
N. Brünner ◽  
...  
2020 ◽  
Vol 20 (9) ◽  
pp. 779-787
Author(s):  
Kajal Ghosal ◽  
Christian Agatemor ◽  
Richard I. Han ◽  
Amy T. Ku ◽  
Sabu Thomas ◽  
...  

Chemotherapy employs anti-cancer drugs to stop the growth of cancerous cells, but one common obstacle to the success is the development of chemoresistance, which leads to failure of the previously effective anti-cancer drugs. Resistance arises from different mechanistic pathways, and in this critical review, we focus on the Fanconi Anemia (FA) pathway in chemoresistance. This pathway has yet to be intensively researched by mainstream cancer researchers. This review aims to inspire a new thrust toward the contribution of the FA pathway to drug resistance in cancer. We believe an indepth understanding of this pathway will open new frontiers to effectively treat drug-resistant cancer.


2020 ◽  
Vol 48 ◽  
pp. 100663 ◽  
Author(s):  
Silpa Narayanan ◽  
Chao-Yun Cai ◽  
Yehuda G. Assaraf ◽  
Hui-Qin Guo ◽  
Qingbin Cui ◽  
...  

2015 ◽  
Vol 35 (4) ◽  
Author(s):  
Ameena J. Haider ◽  
Megan H. Cox ◽  
Natalie Jones ◽  
Alice J. Goode ◽  
Katherine S. Bridge ◽  
...  

Determining how efflux pumps function is important to understanding their role in drug resistance. We have identified amino acids in a human drug efflux pump that affect interaction with substrate and protein targeting.


Author(s):  
Nadia Bouhamdani ◽  
Dominique Comeau ◽  
Sandra Turcotte

For a long time, lysosomes were considered as mere waste bags for cellular constituents. Thankfully, studies carried out in the past 15 years were brimming with elegant and crucial breakthroughs in lysosome research, uncovering their complex roles as nutrient sensors and characterizing them as crucial multifaceted signaling organelles. This review presents the scientific knowledge on lysosome physiology and functions, starting with their discovery and reviewing up to date ground-breaking discoveries highlighting their heterogeneous functions as well as pending questions that remain to be answered. We also review the roles of lysosomes in anti-cancer drug resistance and how they undergo a series of molecular and functional changes during malignant transformation which lead to tumor aggression, angiogenesis, and metastases. Finally, we discuss the strategy of targeting lysosomes in cancer which could lead to the development of new and effective targeted therapies.


2020 ◽  
Vol 20 (2) ◽  
pp. 271-287 ◽  
Author(s):  
Manaf AlMatar ◽  
Işıl Var ◽  
Begüm Kayar ◽  
Fatih Köksal

Background: Numerous investigations demonstrate efflux as a worldwide bacterial mode of action which contributes to the resistance of drugs. The activity of antibiotics, which subjects to efflux, can be improved by the combined usage of efflux inhibitors. However, the efflux role to the overall levels of antibiotic resistance of clinical M. tuberculosis isolates is inadequately comprehended and is still disregarded by many. Method: Here, we assessed the contribution of resistant genes associated with isoniazid (INH) and rifampin (R) resistance to the levels of drug resistance in the (27) clinical isolates of MDR-TB. Additionally, the role of the resistance for six putative drug efflux pump genes to the antibiotics was investigated. The level of katG expression was down-regulated in 24/27 (88.88%) of MDR-TB isolates. Of the 27 MDR-TB isolates, inhA, oxyR-ahpC, and rpoB showed either overexpression or up-regulation in 8 (29.62%), 4 (14.81 %), and 24 (88.88%), respectively. Moreover, the efflux pump genes drrA, drrB, efpA, Rv2459, Rv1634, and Rv1250 were overexpressed under INH/RIF plus fresh pomegranate juice (FPJ) stress signifying the efflux pumps contribution to the overall levels of the resistance of MDR-TB isolates. Conclusion: These results displayed that the levels of drug resistance of MDR-TB clinical isolates are due to combination among drug efflux pump and the presence of mutations in target genes, a truth which is often ignored by the specialists of tuberculosis in favour of the almost undoubted significance of drug target- gene mutations for the resistance in M. tuberculosis.


Sign in / Sign up

Export Citation Format

Share Document