Thermochemical changes on swelling pressure of compacted bentonite

2021 ◽  
Vol 151 ◽  
pp. 107882
Author(s):  
Minseop Kim ◽  
Seungrae Lee ◽  
Enok Cheon ◽  
Minjun Kim ◽  
Seok Yoon
Author(s):  
M Sanchez ◽  
A Lloret ◽  
A Gens ◽  
R Gómez-Espina ◽  
M Villar

Author(s):  
Antti Lempinen

Compacted bentonite is the main candidate for buffer material in several plans for spent nuclear fuel repositories. One of its important properties is high swelling capacity, which is caused by interaction between water molecules and exchangeable cations. This interaction makes bentonite behave differently from capillary materials. In this article, a model for thermo-hydro-mechanical state of partially water saturated bentonite is presented. It couples the water retention and swelling properties with introduction of the swelling factor in effective strain. The Helmholz energy density determines the state with a relatively small set of independent parameters: swelling pressure, swelling factor, maximum confined water content and the reference state. The model parameters are determined from experimental data for FEBEX bentonite, and as a simple consistency check, confined suction curves are calculated and compared to test results. Consistency of the model with observations on nano- and microscale of bentonite is also discussed.


2006 ◽  
Vol 932 ◽  
Author(s):  
K. Tanai ◽  
M. Yui

ABSTRACTThis paper presents a study on gas migration behavior in a bentonite specimen with the aid of X-ray computer tomography (CT) scan data. The laboratory experiment was carried out to clarify gas migration behavior through saturated, compacted bentonite. X-ray CT was used to estimate the spatial distribution of gas and water saturation during gas migration test in the bentonite. For the gas migration test, the controlled flow rate of gas injection was adopted for pre-compacted samples of Kunigel V1 bentonite using helium gas, which is safer than hydrogen gas.A specimen was isotropically consolidated and saturated by synthetic seawater, simultaneously, by applying a backpressure. This was followed by injecting the gas using a syringe pump. Inlet and outlet gas fluxes were monitored. This test exhibited a significant threshold pressure for breakthrough, somewhat larger than the sum of the swelling pressure and the backpressure.The procedure of the X-ray CT measurement is as follows; i) measurement of the initial condition (saturated condition) of the compacted bentonite, ii) measurement of the gas injection condition as a function of time. The digital data obtained from the X-ray CT usually includes some noise. The stacking method can reduce the noise in CT values and enables to identify the gas migration area. The results indicate that gas is transported through preferential pathways in compacted bentonite, and is not homogenous.


2003 ◽  
Vol 40 (2) ◽  
pp. 460-475 ◽  
Author(s):  
Hideo Komine ◽  
Nobuhide Ogata

Compacted bentonite and sand–bentonite mixtures are attracting greater attention as buffer material for repositories of high-level nuclear waste. This buffer material is expected to fill up the space between the canisters containing the waste and the surrounding ground by swelling. To produce the specifications, such as dry density, sand–bentonite mass ratio, and dimensions, of the buffer material, the swelling characteristics of compacted bentonite and sand–bentonite mixtures must be evaluated quantitatively. New equations for evaluating the swelling behavior of compacted bentonite and sand–bentonite mixtures are presented that can accommodate the influences of the sand–bentonite mass ratio and the exchangeable-cation composition of bentonite. The new method for predicting swelling characteristics is presented by combining the new equations with the theoretical equations of the Gouy–Chapman diffuse double layer theory and of the van der Waals force, which can evaluate the repulsive and attractive forces of montmorillonite mineral (i.e., the swelling clay mineral in bentonite). Furthermore, the applicability of the new prediction method has been confirmed by comparing the predicted results with laboratory test results on the swelling deformation and swelling pressure of compacted bentonites and sand–bentonite mixtures.Key words: bentonite, diffuse double layer theory, van der Waals force, nuclear waste disposal, swelling deformation, swelling pressure.


Author(s):  
Yukihisa Tanaka ◽  
Takuma Hasegawa ◽  
Kunihiko Nakamura

In case of construction of repository for radioactive waste near the coastal area, the effect of salinity of water on hydraulic conductivity as well as swelling pressure of bentonite as an engineered barrier should be considered because it is known that the hydraulic conductivity of bentonite increases and swelling pressure decreases with increasing salinity of water. Though the effect of salinity of water on hydraulic conductivity and swelling pressure of bentonite has been investigated experimentally, it is necessary to elucidate and to model the mechanism of the phenomenon because various kinds of bentonites may possibly be placed in various salinities of ground water. Thus, in this study, a model for evaluating hydraulic conductivity as well as swelling pressure of compacted bentonite is proposed considering the effect of salinity of water as follows: a) Change in number of flakes of a stack of montmorillonite because of cohesion. b) Change in viscosity of water in interlayer between flakes of montmorillonite. Quantitative evaluation method for hydraulic conductivity and swelling characteristics of several kinds of bentonites under saline water is proposed based on the model mentioned above.


1994 ◽  
Vol 31 (4) ◽  
pp. 478-490 ◽  
Author(s):  
Hideo Komine ◽  
Nobuhide Ogata

Compacted bentonites are attracting greater attention as back-filling (buffer) materials for repositories of high-level nuclear waste. However, since there are few studies about the swelling characteristics of compacted bentonites, it is first necessary to clarify the fundamental swelling characteristics in detail. For this purpose, various laboratory tests on the swelling deformation and swelling pressure of compacted bentonites were performed and the results analyzed. The following conclusions were drawn from the study. (i) The curve of swelling deformation versus time is strongly dependent on the initial dry density, vertical pressure, and initial water content. The maximum swelling deformation, however, is almost independent of initial water content, and the maximum swelling deformation increases in proportion to the initial dry density, (ii) The maximum swelling pressure increases exponentially with increasing initial dry density, whereas the maximum swelling pressure is almost independent of initial water content. (iii) The swelling mechanism of compacted bentonite was considered on the basis of the swelling behavior of swelling clay particles such as montmorillonite. Furthermore, a model of the swelling characteristics and a new parameter (swelling volumetric strain of montmorillonite), which were able to evaluate the swelling characteristics of compacted bentonite, were proposed. Key words : bentonite, laboratory test, nuclear waste disposal, swelling deformation, swelling pressure.


Clay Minerals ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 733-744 ◽  
Author(s):  
Lin Zhi Lang ◽  
Wiebke Baille ◽  
Snehasis Tripathy ◽  
Tom Schanz

ABSTRACTIn deep geological repositories, compacted bentonites have been proposed for use as barrier materials for isolating nuclear waste. The prevailing thermo-hydro-mechanical boundary conditions in the repositories may affect the swelling capacity and permeability of the compacted bentonites. In this study, the effect of preliminary desiccation on the subsequent hydro-mechanical behaviour (swelling pressure and hydraulic conductivity) of compacted Calcigel bentonite was investigated experimentally at 22°C and 80°C. In the first stage of the test, the compacted specimens were subjected to suction-controlled desiccation at 22°C and 80°C using the vapour-equilibrium technique. After the water content reached equilibrium at a given suction, the axial, radial and volumetric shrinkage strains were measured. Afterwards, constant-volume swelling-pressure tests were performed on the desiccated specimens (second test stage) by saturating the dried specimens with deionized water at 22°C and 80°C. At the end of the swelling-pressure test, the hydraulic conductivities of four saturated specimens were measured at each temperature. The volumetric shrinkage strain of the compacted bentonite during desiccation is controlled by suction instead of temperature. In addition, the preliminary desiccation increases both the swelling pressure and hydraulic conductivity of compacted bentonite, particularly if compacted bentonite undergoes extreme desiccation at an applied suction of >700 MPa.


2010 ◽  
pp. 359-364
Author(s):  
M Sánchez ◽  
M Villar ◽  
R Gómez-Espina ◽  
A Lloret ◽  
A Gens

Sign in / Sign up

Export Citation Format

Share Document