scholarly journals Unifying treatment of nonequilibrium and unstable dynamics of cold bosonic atom system with time-dependent order parameter in Thermo Field Dynamics

2011 ◽  
Vol 326 (4) ◽  
pp. 1070-1083 ◽  
Author(s):  
Y. Nakamura ◽  
Y. Yamanaka
2011 ◽  
Vol 2011 ◽  
pp. 1-10
Author(s):  
Anatoly A. Barybin

Transport equations of the macroscopic superfluid dynamics are revised on the basis of a combination of the conventional (stationary) Ginzburg-Landau equation and Schrödinger's equation for the macroscopic wave function (often called the order parameter) by using the well-known Madelung-Feynman approach to representation of the quantum-mechanical equations in hydrodynamic form. Such an approach has given (a) three different contributions to the resulting chemical potential for the superfluid component, (b) a general hydrodynamic equation of superfluid motion, (c) the continuity equation for superfluid flow with a relaxation term involving the phenomenological parameters and , (d) a new version of the time-dependent Ginzburg-Landau equation for the modulus of the order parameter which takes into account dissipation effects and reflects the charge conservation property for the superfluid component. The conventional Ginzburg-Landau equation also follows from our continuity equation as a particular case of stationarity. All the results obtained are mutually consistent within the scope of the chosen phenomenological description and, being model-neutral, applicable to both the low- and high- superconductors.


1994 ◽  
Vol 09 (14) ◽  
pp. 2363-2409 ◽  
Author(s):  
H. CHU ◽  
H. UMEZAWA

We present a comprehensive review of the most fundamental and practical aspects of thermo-field dynamics (TFD), including some of the most recent developments in the field. To make TFD fully consistent, some suitable changes in the structure of the thermal doublets and the Bogoliubov transformation matrices have been made. A close comparison between TFD and the Schwinger-Keldysh closed time path formalism (SKF) is presented. We find that TFD and SKF are in many ways the same in form; in particular, the two approaches are identical in stationary situations. However, TFD and SKF are quite different in time-dependent nonequilibrium situations. The main source of this difference is that the time evolution of the density matrix itself is ignored in SKF while in TFD it is replaced by a time-dependent Bogoliubov transformation. In this sense TFD is a better candidate for time-dependent quantum field theory. Even in equilibrium situations, TFD has some remarkable advantages over the Matsubara approach and SKF, the most notable being the Feynman diagram recipes, which we will present. We will show that the calculations of two-point functions are simplified, instead of being complicated, by the matrix nature of the formalism. We will present some explicit calculations using TFD, including space-time inhomogeneous situations and the vacuum polarization in equilibrium relativistic QED.


1994 ◽  
Vol 09 (07) ◽  
pp. 1153-1180 ◽  
Author(s):  
Y. YAMANAKA ◽  
H. UMEZAWA ◽  
K. NAKAMURA ◽  
T. ARIMITSU

Making use of the thermo field dynamics (TFD) we formulate a calculable method for time-dependent nonequilibrium systems in a time representation (t-representation) rather than in the k0-Fourier representation. The corrected one-body propagator in the t-representation has the form of B−1 (diagonal matrix) B (B being a thermal Bogoliubov matrix). The number parameter in B here is the observed number (the Heisenberg number) with a fluctuation. With the usual definition of the on-shell self-energy a self-consistent renormalization condition leads to a kinetic equation for the number parameter. This equation turns out to be the Boltzmann equation, from which the entropy law follows.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Daniel Perez-Salinas ◽  
Allan S. Johnson ◽  
Dharmalingam Prabhakaran ◽  
Simon Wall

AbstractSpontaneous C4-symmetry breaking phases are ubiquitous in layered quantum materials, and often compete with other phases such as superconductivity. Preferential suppression of the symmetry broken phases by light has been used to explain non-equilibrium light induced superconductivity, metallicity, and the creation of metastable states. Key to understanding how these phases emerge is understanding how C4 symmetry is restored. A leading approach is based on time-dependent Ginzburg-Landau theory, which explains the coherence response seen in many systems. However, we show that, for the case of the single layered manganite La0.5Sr1.5MnO4, the theory fails. Instead, we find an ultrafast inhomogeneous disordering transition in which the mean-field order parameter no longer reflects the atomic-scale state of the system. Our results suggest that disorder may be common to light-induced phase transitions, and methods beyond the mean-field are necessary for understanding and manipulating photoinduced phases.


2018 ◽  
Vol 32 (10) ◽  
pp. 1850111
Author(s):  
Y. Kuwahara ◽  
Y. Nakamura ◽  
Y. Yamanaka

The way to determine the renormalized energy of inhomogeneous systems of a quantum field under an external potential is established for both equilibrium and nonequilibrium scenarios based on thermo field dynamics. The key step is to find an extension of the on-shell concept valid in homogeneous case. In the nonequilibrium case, we expand the field operator by time-dependent wavefunctions that are solutions of the appropriately chosen differential equation, synchronizing with temporal change of thermal situation, and the quantum transport equation is derived from the renormalization procedure. Through numerical calculations of a triple-well model with a reservoir, we show that the number distribution and the time-dependent wavefunctions are relaxed consistently to the correct equilibrium forms at the long-term limit.


Sign in / Sign up

Export Citation Format

Share Document