Low-frequency room acoustical simulation of a small room with BEM and complex-valued surface impedances

2022 ◽  
Vol 188 ◽  
pp. 108570
Author(s):  
Murilo Cardoso Soares ◽  
Eric Brandão Carneiro ◽  
Roberto Aizik Tenenbaum ◽  
Paulo Henrique Mareze
2013 ◽  
Vol 339 ◽  
pp. 275-280
Author(s):  
Li Chen ◽  
Rong Hua Peng

A new algorithm is proposed for digital watermarking by applying complex-valued linear-phase filter banks to low frequency-band coefficients of images in the DCT domain. The watermark is conveyed in the phase spectrum of the subband coefficients. The robustness of the algorithm is examined in JPEG encoding with different qualities and compared with the DFT-based approach. Because only low frequency-band DCT coefficients are applied to complex-valued filter banks, the computational load introduced by the complex-valued filter banks is kept low. The watermark decoding is only accessible to users with the key information, i.e., impulse responses of the complex-valued linear-phase filter banks that designed with time-frequency spread property.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Panayiotis Vafeas

This contribution deals with the scattering by a metallic ellipsoidal target, embedded in a homogeneous conductive medium, which is stimulated when a 3D time-harmonic magnetic dipole is operating at the low-frequency realm. The incident, the scattered, and the total three-dimensional electromagnetic fields, which satisfy Maxwell’s equations, yield low-frequency expansions in terms of positive integral powers of the complex-valued wave number of the exterior medium. We preserve the static Rayleigh approximation and the first three dynamic terms, while the additional terms of minor contribution are neglected. The Maxwell-type problem is transformed into intertwined potential-type boundary value problems with impenetrable boundary conditions, whereas the environment of a genuine ellipsoidal coordinate system provides the necessary setting for tackling such problems in anisotropic space. The fields are represented via nonaxisymmetric infinite series expansions in terms of harmonic eigenfunctions, affiliated with the ellipsoidal system, obtaining analytical closed-form solutions in a compact fashion. Until nowadays, such problems were attacked by using the very few ellipsoidal harmonics exhibiting an analytical form. In the present article, we address this issue by incorporating the full series expansion of the potentials and utilizing the entire subspace of ellipsoidal harmonic eigenfunctions.


2020 ◽  
Vol 7 (8) ◽  
pp. 200514
Author(s):  
Mirosław Meissner ◽  
Krzysztof Wiśniewski

In the low-frequency range, the acoustical behaviour of enclosed spaces is strongly influenced by excited acoustic modes resulting in a spatial irregularity of a steady-state sound field. In the paper, this problem has been examined theoretically and numerically for a system of coupled spaces with complex-valued conditions on boundary surfaces. Using a modal expansion method, an analytic formula for Green’s function was derived allowing to predict the interior sound field for a pure-tone excitation. To quantify the spatial irregularity of steady-state sound field, the parameter referred to as the mean spatial deviation was introduced. A numerical simulation was carried out for the system consisting of two coupled rectangular subspaces. Eigenfunctions and eigenfrequencies for this system were determined using the high-accuracy eigenvalue solver. As was evidenced by computational data, for small sound damping on absorptive walls the mean spatial deviation peaks at frequencies corresponding to eigenfrequencies of strongly localized modes. However, if the sound damping is much higher, the main cause of spatial irregularity of the interior sound field is the appearance of sharp valleys in a spatial distribution of a sound pressure level.


Author(s):  
K. Hama

The lateral line organs of the sea eel consist of canal and pit organs which are different in function. The former is a low frequency vibration detector whereas the latter functions as an ion receptor as well as a mechano receptor.The fine structure of the sensory epithelia of both organs were studied by means of ordinary transmission electron microscope, high voltage electron microscope and of surface scanning electron microscope.The sensory cells of the canal organ are polarized in front-caudal direction and those of the pit organ are polarized in dorso-ventral direction. The sensory epithelia of both organs have thinner surface coats compared to the surrounding ordinary epithelial cells, which have very thick fuzzy coatings on the apical surface.


Author(s):  
Robert E. Nordquist ◽  
J. Hill Anglin ◽  
Michael P. Lerner

A human breast carcinoma cell line (BOT-2) was derived from an infiltrating duct carcinoma (1). These cells were shown to have antigens that selectively bound antibodies from breast cancer patient sera (2). Furthermore, these tumor specific antigens could be removed from the living cells by low frequency sonication and have been partially characterized (3). These proteins have been shown to be around 100,000 MW and contain approximately 6% hexose and hexosamines. However, only the hexosamines appear to be available for lectin binding. This study was designed to use Concanavalin A (Con A) and Ricinus Communis (Ricin) agglutinin for the topagraphical localization of D-mannopyranosyl or glucopyranosyl and D-galactopyranosyl or DN- acetyl glactopyranosyl configurations on BOT-2 cell surfaces.


Author(s):  
P. A. Marsh ◽  
T. Mullens ◽  
D. Price

It is possible to exceed the guaranteed resolution on most electron microscopes by careful attention to microscope parameters essential for high resolution work. While our experience is related to a Philips EM-200, we hope that some of these comments will apply to all electron microscopes.The first considerations are vibration and magnetic fields. These are usually measured at the pre-installation survey and must be within specifications. It has been our experience, however, that these factors can be greatly influenced by the new facilities and therefore must be rechecked after the installation is completed. The relationship between the resolving power of an EM-200 and the maximum tolerable low frequency interference fields in milli-Oerstedt is 10 Å - 1.9, 8 Å - 1.4, 6 Å - 0.8.


Author(s):  
G. Y. Fan ◽  
J. M. Cowley

It is well known that the structure information on the specimen is not always faithfully transferred through the electron microscope. Firstly, the spatial frequency spectrum is modulated by the transfer function (TF) at the focal plane. Secondly, the spectrum suffers high frequency cut-off by the aperture (or effectively damping terms such as chromatic aberration). While these do not have essential effect on imaging crystal periodicity as long as the low order Bragg spots are inside the aperture, although the contrast may be reversed, they may change the appearance of images of amorphous materials completely. Because the spectrum of amorphous materials is continuous, modulation of it emphasizes some components while weakening others. Especially the cut-off of high frequency components, which contribute to amorphous image just as strongly as low frequency components can have a fundamental effect. This can be illustrated through computer simulation. Imaging of a whitenoise object with an electron microscope without TF limitation gives Fig. 1a, which is obtained by Fourier transformation of a constant amplitude combined with random phases generated by computer.


Author(s):  
M. T. Postek ◽  
A. E. Vladar

Fully automated or semi-automated scanning electron microscopes (SEM) are now commonly used in semiconductor production and other forms of manufacturing. The industry requires that an automated instrument must be routinely capable of 5 nm resolution (or better) at 1.0 kV accelerating voltage for the measurement of nominal 0.25-0.35 micrometer semiconductor critical dimensions. Testing and proving that the instrument is performing at this level on a day-by-day basis is an industry need and concern which has been the object of a study at NIST and the fundamentals and results are discussed in this paper.In scanning electron microscopy, two of the most important instrument parameters are the size and shape of the primary electron beam and any image taken in a scanning electron microscope is the result of the sample and electron probe interaction. The low frequency changes in the video signal, collected from the sample, contains information about the larger features and the high frequency changes carry information of finer details. The sharper the image, the larger the number of high frequency components making up that image. Fast Fourier Transform (FFT) analysis of an SEM image can be employed to provide qualitiative and ultimately quantitative information regarding the SEM image quality.


1992 ◽  
Vol 1 (4) ◽  
pp. 52-55 ◽  
Author(s):  
Gail L. MacLean ◽  
Andrew Stuart ◽  
Robert Stenstrom

Differences in real ear sound pressure levels (SPLs) with three portable stereo system (PSS) earphones (supraaural [Sony Model MDR-44], semiaural [Sony Model MDR-A15L], and insert [Sony Model MDR-E225]) were investigated. Twelve adult men served as subjects. Frequency response, high frequency average (HFA) output, peak output, peak output frequency, and overall RMS output for each PSS earphone were obtained with a probe tube microphone system (Fonix 6500 Hearing Aid Test System). Results indicated a significant difference in mean RMS outputs with nonsignificant differences in mean HFA outputs, peak outputs, and peak output frequencies among PSS earphones. Differences in mean overall RMS outputs were attributed to differences in low-frequency effects that were observed among the frequency responses of the three PSS earphones. It is suggested that one cannot assume equivalent real ear SPLs, with equivalent inputs, among different styles of PSS earphones.


1971 ◽  
Vol 36 (4) ◽  
pp. 527-537 ◽  
Author(s):  
Norman P. Erber

Two types of special hearing aid have been developed recently to improve the reception of speech by profoundly deaf children. In a different way, each special system provides greater low-frequency acoustic stimulation to deaf ears than does a conventional hearing aid. One of the devices extends the low-frequency limit of amplification; the other shifts high-frequency energy to a lower frequency range. In general, previous evaluations of these special hearing aids have obtained inconsistent or inconclusive results. This paper reviews most of the published research on the use of special hearing aids by deaf children, summarizes several unpublished studies, and suggests a set of guidelines for future evaluations of special and conventional amplification systems.


Sign in / Sign up

Export Citation Format

Share Document