Heterogeneous photocatalysis of moxifloxacin: Identification of degradation products and determination of residual antibacterial activity

2013 ◽  
Vol 138-139 ◽  
pp. 333-341 ◽  
Author(s):  
Xander Van Doorslaer ◽  
Kristof Demeestere ◽  
Philippe M. Heynderickx ◽  
Marieke Caussyn ◽  
Herman Van Langenhove ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yongpeng Xu ◽  
Shiyao Liu ◽  
Fang Guo ◽  
Fuyi Cui

Permanganate [Mn(VII)] chemistry oxidation of fluoroquinolone (FQ) antibiotic enrofloxacin (ENR) in water is investigated with respect to the kinetics, pH effect, buffer effect, and the evaluation of residual antibacterial activity after oxidative treatment. The degradation of ENR by Mn(VII) obeyed a secondary-order kinetics. Modern high-resolution tandem mass spectrometry coupled with high performance liquid chromatography was used to analyze the structures of degradation products. Four main oxidation products were identified at different pH values. Several influencing factors, pH value, and buffer obviously affect reaction rate and products relative abundance. Autocatalysis taking place at slightly acidic pH promotes the reaction but has no effect on the product types. A plausible oxidation pathway for enrofloxacin with Mn(VII) was proposed. The oxidation took place at the piperazine ring. Structural changes to the piperazine ring include N-dealkylation, hydroxylation, and hydrolysis. Residual antibacterial activity of the oxidative reaction solutions against nonresistantEscherichia colireference strain DH5αis evaluated by means of quantitative bioassays. It is noticed that the oxidation products exhibited negligible antibacterial activity just when the structures of the products changed.


1989 ◽  
Vol 62 (04) ◽  
pp. 1043-1045 ◽  
Author(s):  
Paul F M M van Bergen ◽  
Eduard A R Knot ◽  
Jan J C Jonker ◽  
Auke C de Boer ◽  
Moniek P M de Maat

SummaryWe studied the diagnostic value of recently introduced ELISA’s for the determination of thrombin-antithrombin III (TAT) complexes, fibrin degradation products (FbDP), fibrinogen degradation products (FgDP) and total degradation products (TDP) for deep venous thrombosis (DVT) in plasma of 239 consecutive outpatients, suspected for DVT by their family doctor. DVT was confirmed by impedance plethysmography in 60 patients. Using the 95th percentile range of 42 healthy volunteers the sensitivity for the detection of DVT was: 37% for TAT, 95% for TDP, 92% for FbDP and 90% for FgDP. Specificity was: 88% for TAT, 16% for TDP, 20% for FbDP and 25% for FgDP.We conclude that these assays are of little value in the diagnosis of DVT in outpatients.


Author(s):  
K. Srinivasa Rao ◽  
Keshar N K ◽  
N Jena ◽  
M.E.B Rao ◽  
A K Patnaik

A stability-indicating LC assay method was developed for the quantitative determination of fenofibrate (FFB) in pharmaceutical dosage form in the presence of its degradation products and kinetic determinations were evaluated in acidic, alkaline and peroxide degradation conditions. Chromatographic separation was achieved by use of Zorbax C18 column (250 × 4.0 mm, 5 μm). The mobile phase was established by mixing phosphate buffer (pH adjusted 3 with phosphoric acid) and acetonitrile (30:70 v/v). FFB degraded in acidic, alkaline and hydrogen peroxide conditions, while it was more stable in thermal and photolytic conditions. The described method was linear over a range of 1.0-500 μg/ml for determination of FFB (r= 0.9999). The precision was demonstrated by relative standard deviation (RSD) of intra-day (RSD= 0.56– 0.91) and inter-day studies (RSD= 1.47). The mean recovery was found to be 100.01%. The acid and alkaline degradations of FFB in 1M HCl and 1M NaOH solutions showed an apparent zero-order kinetics with rate constants 0.0736 and 0.0698  min−1 respectively and the peroxide degradation with 5% H2O2 demonstrated an apparent first-order kinetics with rate constant k = 0.0202 per min. The t1/2, t90   values are also determined for all the kinetic studies. The developed method was found to be simple, specific, robust, linear, precise, and accurate for the determination of FFB in pharmaceutical formulations.  


2019 ◽  
Vol 22 (5) ◽  
pp. 346-354
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Aim and Objective: Antibiotic resistance is a serious constraint to the development of new effective antibacterials. Therefore, the discovery of the new antibacterials remains one of the main challenges in modern medicinal chemistry. This study was undertaken to identify novel molecules with antibacterial activity. Materials and Methods: Using our unique double-reporter system, in-house large-scale HTS campaign was conducted for the identification of antibacterial potency of small-molecule compounds. The construction allows us to visually assess the underlying mechanism of action. After the initial HTS and rescreen procedure, luciferase assay, C14-test, determination of MIC value and PrestoBlue test were carried out. Results: HTS rounds and rescreen campaign have revealed the antibacterial activity of a series of Nsubstituted triazolo-azetidines and their isosteric derivatives that has not been reported previously. Primary hit-molecule demonstrated a MIC value of 12.5 µg/mL against E. coli Δ tolC with signs of translation blockage and no SOS-response. Translation inhibition (26%, luciferase assay) was achieved at high concentrations up to 160 µg/mL, while no activity was found using C14-test. The compound did not demonstrate cytotoxicity in the PrestoBlue assay against a panel of eukaryotic cells. Within a series of direct structural analogues bearing the same or bioisosteric scaffold, compound 2 was found to have an improved antibacterial potency (MIC=6.25 µg/mL) close to Erythromycin (MIC=2.5-5 µg/mL) against the same strain. In contrast to the parent hit, this compound was more active and selective, and provided a robust IP position. Conclusion: N-substituted triazolo-azetidine scaffold may be used as a versatile starting point for the development of novel active and selective antibacterial compounds.


2020 ◽  
Vol 16 (6) ◽  
pp. 671-689
Author(s):  
Marcin Gackowski ◽  
Marcin Koba ◽  
Katarzyna Mądra-Gackowska ◽  
Piotr Kośliński ◽  
Stefan Kruszewski

At present, no one can imagine drug development, marketing and post-marketing without rigorous quality control at each stage. Only modern, selective, accurate and precise analytical methods for determination of active compounds, their degradation products and stability studies are able to assure the appropriate amount and purity of drugs administered every day to millions of patients all over the world. For routine control of drugs simple, economic, rapid and reliable methods are desirable. The major focus of current scrutiny is placed on high-performance thin layer chromatography and derivative spectrophotometry methods, which fulfill routine drug estimation’s expectations [1-4]. The present paper reveals state-of-the-art and possible applications of those methods in pharmaceutical analysis between 2010 and 2018. The review shows advantages of high-performance thin layer chromatography and derivative spectrophotometry, including accuracy and precision comparable to more expensive and time-consuming methods as well as additional fields of possible applications, which contribute to resolving many analytical problems in everyday laboratory practice.


2020 ◽  
Vol 16 (8) ◽  
pp. 1037-1051
Author(s):  
Ehab Farouk Elkady ◽  
Marwa Ahmed Fouad ◽  
Abdulgabar A. Ezzy Faquih

Background: Atenolol is a selective beta 1 blocker that can be used alone or in combination with hydrochlorothiazide or with chlorthalidone for the treatment of hypertension and prevention from a heart attack. Objective: The main target of this work was to improve modern, easy, accurate and selective liquid chromatographic method (RP-HPLC) for the determination of these drugs in the presence of their degradation products. These methods can be used as analytical gadgets in quality control laboratories for a routine examination. Methods: In this method, the separation was accomplished through an Inertsil® ODS-3V C18 column (250 mm x 4.6 mm, 5 μm), the mobile phase used was 25 mM aqueous potassium dihydrogen orthophosphate solution adjusted to pH 6.8 by using 0.1M sodium hydroxide and acetonitrile (77 : 23, v/v), the flow rate used was 1 ml/min and detection was achieved at 235 nm using UV. Results: All peaks were sharp and well separated, the retention times were atenolol degradation (ATN Deg.) 2.311 min, atenolol (ATN) 2.580 min, hydrochlorothiazide degradation (HCT Deg.) 5.890 min, hydrochlorothiazide (HCT) 7.016 min, chlorthalidone degradation CTD Deg 8.018 min and chlorthalidone (CTD) 14.972 min. Linearity was obtained and the range of concentrations was 20- 160 μg/ml for atenolol, 10-80 μg/ml for hydrochlorothiazide and 10-80 μg/ml for chlorthalidone. According to ICH guidelines, method validation was accomplished, these methods include linearity, accuracy, selectivity, precision and robustness. Conclusion: The optimized method demonstrated to be specific, robust and accurate for the quality control of the cited drugs in pharmaceutical dosage forms.


2020 ◽  
Vol 16 (8) ◽  
pp. 1106-1112
Author(s):  
Ibrahim A. Darwish ◽  
Nasr Y. Khalil ◽  
Mohammad AlZeer

Background: Axitinib (AXT) is a member of the new generation of the kinase inhibitor indicated for the treatment of advanced renal cell carcinoma. Its therapeutic benefits depend on assuring the good-quality of its dosage forms in terms of content and stability of the pharmaceutically active ingredient. Objective: This study was devoted to the development of a simple, sensitive and accurate stabilityindicating high-performance liquid chromatographic method with ultraviolet detection (HPLC-UV) for the determination of AXT in its bulk and dosage forms. Methods: Waters HPLC system was used. The chromatographic separation of AXT, internal standard (olaparib), and degradation products were performed on the Nucleosil CN column (250 × 4.6 mm, 5 μm). The mobile phase consisted of water:acetonitrile:methanol (40:40:20, v/v/v) with a flow rate of 1 ml/min, and the UV detector was set at 225 nm. AXT was subjected to different accelerated stress conditions and the degradation products, when any, were completely resolved from the intact AXT. Results: The method was linear (r = 0.9998) in the concentration range of 5-50 μg/ml. The limits of detection and quantitation were 0.85 and 2.57 μg/ml, respectively. The accuracy of the method, measured as recovery, was in the range of 98.0-103.6% with relative standard deviations in the range of 0.06-3.43%. The results of stability testing revealed that AXT was mostly stable in neutral and oxidative conditions; however, it was unstable in alkaline and acidic conditions. The kinetics of degradation were studied, and the kinetic rate constants were determined. The proposed method was successfully applied for the determination of AXT in bulk drug and dosage forms. Conclusions: A stability-indicating HPLC-UV method was developed and validated for assessing AXT stability in its bulk and dosage forms. The method met the regulatory requirements of the International Conference on Harmonization (ICH) and the Food and Drug Administration (FDA). The results demonstrated that the method would have great value when applied in quality control and stability studies for AXT.


Sign in / Sign up

Export Citation Format

Share Document