Microstructured ZrO2 coating of iron oxide for enhanced CO2 conversion

Author(s):  
Bo Jin ◽  
Hilde Poelman ◽  
Christophe Detavernier ◽  
Zhiwu Liang ◽  
Guy B. Marin ◽  
...  
2018 ◽  
Vol 225 ◽  
pp. 128-138 ◽  
Author(s):  
Avik Halder ◽  
Martina Kilianová ◽  
Bing Yang ◽  
Eric C. Tyo ◽  
Soenke Seifert ◽  
...  

2019 ◽  
Vol 7 (17) ◽  
pp. 14435-14442 ◽  
Author(s):  
Bing Yang ◽  
Xin Yu ◽  
Avik Halder ◽  
Xiaoben Zhang ◽  
Xiong Zhou ◽  
...  

Author(s):  
H. Mori ◽  
Y. Murata ◽  
H. Yoneyama ◽  
H. Fujita

Recently, a new sort of nano-composites has been prepared by incorporating such fine particles as metal oxide microcrystallites and organic polymers into the interlayer space of montmorillonite. Owing to their extremely large specific surface area, the nano-composites are finding wide application[1∼3]. However, the topographic features of the microstructures have not been elucidated as yet In the present work, the microstructures of iron oxide-pillared montmorillonite have been investigated by high-resolution transmission electron microscopy.Iron oxide-pillared montmorillonite was prepared through the procedure essentially the same as that reported by Yamanaka et al. Firstly, 0.125 M aqueous solution of trinuclear acetato-hydroxo iron(III) nitrate, [Fe3(OCOCH3)7 OH.2H2O]NO3, was prepared and then the solution was mixed with an aqueous suspension of 1 wt% clay by continuously stirring at 308 K. The final volume ratio of the latter aqueous solution to the former was 0.4. The clay used was sodium montmorillonite (Kunimine Industrial Co.), having a cation exchange capacity of 100 mequiv/100g. The montmorillonite in the mixed suspension was then centrifuged, followed by washing with deionized water. The washed samples were spread on glass plates, air dried, and then annealed at 673 K for 72 ks in air. The resultant film products were approximately 20 μm in thickness and brown in color.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


2020 ◽  
pp. 1-18
Author(s):  
Yu.V. Bilokopytov ◽  
◽  
S.L. Melnykova ◽  
N.Yu. Khimach ◽  
◽  
...  

CO2 is a harmful greenhouse gas, a product of chemical emissions, the combustion of fossil fuels and car exhausts, and it is a widely available source of carbon. The review considers various ways of hydrogenation of carbon dioxide into components of motor fuels - methanol, dimethyl ether, ethanol, hydrocarbons - in the presence of heterogeneous catalysts. At each route of conversion of CO2 (into oxygenates or hydrocarbons) the first stage is the formation of CO by the reverse water gas shift (rWGS) reaction, which must be taken into account when catalysts of process are choosing. The influence of chemical nature, specific surface area, particle size and interaction between catalyst components, as well as the method of its production on the CO2 conversion processes is analyzed. It is noted that the main active components of CO2 conversion into methanol are copper atoms and ions which interact with the oxide components of the catalyst. There is a positive effect of other metals oxides additives with strong basic centers on the surface on the activity of the traditional copper-zinc-aluminum oxide catalyst for the synthesis of methanol from the synthesis gas. The most active catalysts for the synthesis of DME from CO2 and H2 are bifunctional. These catalysts contain both a methanol synthesis catalyst and a dehydrating component, such as mesoporous zeolites with acid centers of weak and medium strength, evenly distributed on the surface. The synthesis of gasoline hydrocarbons (≥ C5) is carried out through the formation of CO or CH3OH and DME as intermediates on multifunctional catalysts, which also contain zeolites. Hydrogenation of CO2 into ethanol can be considered as an alternative to the synthesis of ethanol through the hydration of ethylene. High activation energy of carbon dioxide, harsh synthesis conditions as well as high selectivity for hydrocarbons, in particular methane remains the main problems. Further increase of selectivity and efficiency of carbon dioxide hydrogenation processes involves the use of nanocatalysts taking into account the mechanism of CO2 conversion reactions, development of methods for removing excess water as a by-product from the reaction zone and increasing catalyst stability over time.


Sign in / Sign up

Export Citation Format

Share Document