scholarly journals Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine

2014 ◽  
Vol 119 ◽  
pp. 405-416 ◽  
Author(s):  
S. Molina ◽  
C. Guardiola ◽  
J. Martín ◽  
D. García-Sarmiento
2021 ◽  
Vol 9 (2) ◽  
pp. 123
Author(s):  
Sergejus Lebedevas ◽  
Lukas Norkevičius ◽  
Peilin Zhou

Decarbonization of ship power plants and reduction of harmful emissions has become a priority in the technological development of maritime transport, including ships operating in seaports. Engines fueled by diesel without using secondary emission reduction technologies cannot meet MARPOL 73/78 Tier III regulations. The MEPC.203 (62) EEDI directive of the IMO also stipulates a standard for CO2 emissions. This study presents the results of research on ecological parameters when a CAT 3516C diesel engine is replaced by a dual-fuel (diesel-liquefied natural gas) powered Wartsila 9L20DF engine on an existing seaport tugboat. CO2, SO2 and NOx emission reductions were estimated using data from the actual engine load cycle, the fuel consumption of the KLASCO-3 tugboat, and engine-prototype experimental data. Emission analysis was performed to verify the efficiency of the dual-fuel engine in reducing CO2, SO2 and NOx emissions of seaport tugboats. The study found that replacing a diesel engine with a dual-fuel-powered engine led to a reduction in annual emissions of 10% for CO2, 91% for SO2, and 65% for NOx. Based on today’s fuel price market data an economic impact assessment was conducted based on the estimated annual fuel consumption of the existing KLASCO-3 seaport tugboat when a diesel-powered engine is replaced by a dual-fuel (diesel-natural gas)-powered engine. The study showed that a 33% fuel costs savings can be achieved each year. Based on the approved methodology, an ecological impact assessment was conducted for the entire fleet of tugboats operating in the Baltic Sea ports if the fuel type was changed from diesel to natural gas. The results of the assessment showed that replacing diesel fuel with natural gas achieved 78% environmental impact in terms of NOx emissions according to MARPOL 73/78 Tier III regulations. The research concludes that new-generation engines on the market powered by environmentally friendly fuels such as LNG can modernise a large number of existing seaport tugboats, significantly reducing their emissions in ECA regions such as the Baltic Sea.


Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


Author(s):  
Masoud Iranmanesh ◽  
J. P. Subrahmanyam ◽  
M. K. G. Babu

In this investigation, tests were conducted on a single cylinder DI diesel engine fueled with neat diesel and biodiesel as baseline fuel with addition of 5 to 20% DEE on a volume basis in steps of 5 vol.% as supplementary oxygenated fuel to analyze the simultaneous reduction of smoke and oxides of nitrogen. Some physicochemical properties of test fuels such as heating value, viscosity, specific gravity and distillation profile were also determined in accordance to the ASTM standards. The results obtained from the engine tests have shown a significant reduction in NOX emissions especially for biodiesel and a little decrease in smoke of DEE blends compared with baseline fuels. A global overview of the results has shown that the 5% DEE-Diesel fuel and 15% DEE-Biodiesel blend are the optimal blend based on performance and emission characteristics.


Author(s):  
Kuo Yang ◽  
Pingen Chen

Abstract Engine efficiency improvement is very critical for medium to heavy-duty vehicles to reduce Diesel fuel consumption and enhance U.S. energy security. The tradeoff between engine efficiency and NOx emissions is an intrinsic property that prevents modern Diesel engines, which are generally equipped with exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT), from achieving the optimal engine efficiency while meeting the stringent NOx emission standards. The addition of urea-based selective catalytic reduction (SCR) systems to modern Diesel engine aftertreatment systems alleviate the burden of NOx emission control on Diesel engines, which in return creates extra freedom for optimizing Diesel engine efficiency. This paper proposes two model-based approaches to locate the optimal operating point of EGR and VGT in the air-path loop to maximize the indicated efficiency of turbocharged diesel engine. Simulation results demonstrated that the engine brake specific fuel consumption (BSFC) can be reduced by up to 1.6% through optimization of EGR and VGT, compared to a baseline EGR-VGT control which considers both NOx emissions and engine efficiency on engine side. The overall equivalent BSFCs are 1.8% higher with optimized EGR and VGT control than with the baseline control. In addition, the influence of reducing EGR valve opening on the non-minimum phase behavior of the air path loop is also analyzed. Simulation results showed slightly stronger non-minimum phase behaviors when EGR is fully closed.


Due to fast depletion of fuel and for the huge demand of various engine fuels in large sectors and power generation, thse biodiesel which is derived from biological wastes can be a substitute of pure diesel oil. Diesel engine has the benefits of low fuel consumption, high potency, smart economical and dynamic performance. However at the identical time, the diesel engine has high NOx and soot emissions. And these two sorts of emissions provides a trade-off relationship which can bring difficulties to satisfy the necessities of emission rules of NOx and soot. This particular paper primarily reviews regarding using of preheated bio-diesel that contains 20 percentage of pure sunflower oil (biological name-Helianthus annuus) and analyses its performance characteristics for selected blend with completely variable loads. Various experiments were carried out by employing a four stroke single cylinder, direct injection, water cooled diesel engine with suitable specifications. Helianthus oil is mixed with bio diesel for fast burning inside the engine cylinder and by doing so , the Cetane number is quite high that leads to the ignition delay shorter. Therefore the overall content is preheated somewhat in order to lift its temperature so as to boost the burning process. Incorporating to this , it reduces the various emissions such as NOx, CO and smoke capacity by 2% to 3%. Various parameters are required to outline the analysis of combustion and performance characteristics of the test fuel like brake thermal efficiency(BTE),basic specific fuel consumption(BSFC), basic specific energy consumption (BSEC),temperature of the exhaust gas and emissions like NOx, unburn hydrocarbons(HC), carbon monoxide(CO) and smoke were carried out in the specified engine


Author(s):  
Stelios Provataris ◽  
Nicholas Savva ◽  
Dimitrios Hountalas

Over a significant period of time, efforts have been made towards a valid and accurate estimation of DI diesel engine NOx emissions. Considering the fact that experiments have a high cost in both time and money, modelling approaches have been developed in an effort to overcome these issues. It is well known that accuracy in the prediction of NOx emissions lies specifically on the accurate estimation of local temperature and O2 histories inside the combustion chamber that govern NOx formation, fulfilled by an accurate estimation of the combustion mechanism. To account for the actual effect of parameters that control NOx formation and overcome inefficiencies introduced from existing purely empirical models or artificial neural networks, valid only on the combustion systems for which they were developed [1], an alternative solution is the introduction of physically based semi-empirical models. Towards this direction, in the present work is presented and evaluated a new modelling approach, based on the combustion rate obtained from the measured cylinder pressure trace using Heat Release Rate Analysis. The model used is a semi-empirical two-zone one which makes use of the estimated elementary fuel mass burnt at each crank angle interval. The combustion process is considered to be adiabatic, while chemical dissociation is also considered. With this approach, temperature distribution throughout the combustion chamber is considered for, together with its evolution during the engine cycle. In addition, O2 availability is also considered for through the calculated charge composition. The result is an extremely fast computational model, combining the advantages of both empirical and physically based ones. In the present work is given a detailed validation of the model, from its application on two different types of diesel engines: a heavy-duty DI diesel engine and a light-duty DI diesel engine with pilot fuel injection. A significant number of cases where tested for both engine configurations, considering different operation points and variation of operating parameters, such as rail pressure and EGR. The twelve points of the European Stationary Cycle (ESC) were covered for the case of the heavy duty DI diesel engine, whilst for the light-duty DI engine a total number of forty-six operating points was studied. For both engine configurations the model reveals a very good predictive ability, considering for the effect of all operating parameters examined on NOx emissions. However, there is potential for improvement and development on its physical base for even more accurate predictions. The merits of good accuracy in prediction trends with varying engine operating parameters — even without calibration — and low computational time establish a potential for model use in engine development, optimization studies and model based control applications.


2011 ◽  
Vol 347-353 ◽  
pp. 3915-3919 ◽  
Author(s):  
Jun Liu ◽  
Zhen Bin Chen ◽  
Ming Wei Xiao ◽  
Sheng Jun Jiang

To meet demands for improvements in the CO,NOx and smoke intensity and fuel economy from diesel engine,the emulsified diesel fuel are choose as alternative fuel .It is prepared through selecting appropriate compound-surfactants on the basis of the HLB (hydrophilic and lipop- hilic balance) value.Comparative experiments between the emulsified fuels and diesel are undertook based on engine bench test in the model 295A diesel engine without any modification. The results indicate that smoke intensity and NOx emissions are reduced greatly when using the emulsified fuels ,especially for those with glucose Solution.Besides,The fuel consumption of the emulsified fuels s are less than that of pure diesel and the economy characteristic from diesel engine is better.


2021 ◽  
Vol 45 (3) ◽  
pp. 217-223
Author(s):  
Khatir Naima ◽  
Younes Menni ◽  
Mounir Alliche ◽  
Giulio Lorenzini ◽  
Hijaz Ahmad ◽  
...  

Recently, there is an increasing interest in the pyrolysis of waste plastic into usable fuel as a friendly environment method for waste plastic disposal. The existing literature from various studies stated that the major problem related to the use of WPO in diesel engines is the high NOx emissions level. This paper aims to remedy this problem by suggesting the best EGR percentage with the advanced optimum injection timing. Primary, 5 EGR percentage fractions are considered: 0%, 5%, 15%, 20% and 25% percent. The results showed that 25% is the best percentage regarding emissions. However, a significant reduction in mean in-cylinder pressure, temperature, and heat release rate was depicted with the EGR fraction increase. Injection timing is advanced to recoup the decrease in performance. The results showed that 25% of EGR and advanced injection timing by 5 degrees would be better for performances and emissions of DI diesel engine while running with waste plastic oil as an alternative fuel.


Sign in / Sign up

Export Citation Format

Share Document