Effect of process parameters on energy performance of spray drying with exhaust air heat recovery for production of high value particles

2015 ◽  
Vol 151 ◽  
pp. 285-295 ◽  
Author(s):  
Wittaya Julklang ◽  
Boris Golman
2017 ◽  
Vol 21 (3) ◽  
pp. 1419-1429
Author(s):  
Shaaban Ghodbanan ◽  
Reza Alizadeh ◽  
Sirous Shafiei

Non-linear programming optimization method was used to optimize total steam and air consumption in the dryer section of multi-cylinder fluting paper machine. Equality constraints of the optimization model were obtained from specified process blocks considering mass and energy balance relationships in drying and heat recovery sections. Inequality constraints correspond to process parameters such as production capacity, operating conditions, and other limitations. Using the simulation, the process parameters can be optimized to improve the energy efficiency and heat recovery performance. For a corrugating machine, optimized parameters show the total steam use can be reduced by about 11% due to improvement of the heat recovery performance and optimization of the operating conditions such as inlet web dryness, evaporation rate, and exhaust air humidity, accordingly total steam consumption can be decreased from about 1.71 to 1.53 tonnes steam per tonne paper production. The humidity of the exhaust air should be kept as high as possible to optimize the energy performance and avoid condensation in the pocket dryers and hood exhaust air. So the simulation shows the supply air should be increased by about 10% to achieve optimal humidity level which was determined about 0.152 kgH2O/(kg dry air).


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 608
Author(s):  
Csilla Bartos ◽  
Patrícia Varga ◽  
Piroska Szabó-Révész ◽  
Rita Ambrus

The absorption of non-steroidal anti-inflammatory drugs (NSAIDs) through the nasal epithelium offers an innovative opportunity in the field of pain therapy. Thanks to the bonding of chitosan to the nasal mucosa and its permeability-enhancing effect, it is an excellent choice to formulate microspheres for the increase of drug bioavailability. The aim of our work includes the preparation of spray-dried cross-linked and non-cross-linked chitosan-based drug delivery systems for intranasal application, the optimization of spray-drying process parameters (inlet air temperature, pump rate), and the composition of samples. Cross-linked products were prepared by using different amounts of sodium tripolyphosphate. On top of these, the micrometric properties, the structural characteristics, the in vitro drug release, and the in vitro permeability of the products were studied. Spray-drying resulted in micronized chitosan particles (2–4 μm) regardless of the process parameters. The meloxicam (MEL)-containing microspheres showed nearly spherical habit, while MEL was present in a molecularly dispersed state. The highest dissolved (>90%) and permeated (~45 µg/cm2) MEL amount was detected from the non-cross-linked sample. Our results indicate that spray-dried MEL-containing chitosan microparticles may be recommended for the development of a novel drug delivery system to decrease acute pain or enhance analgesia by intranasal application.


2018 ◽  
Vol 37 (5) ◽  
pp. 535-545 ◽  
Author(s):  
Artur Lewandowski ◽  
Maciej Jaskulski ◽  
Ireneusz Zbiciński

2010 ◽  
Vol 99 (2) ◽  
pp. 575-586 ◽  
Author(s):  
Krzysztof Cal ◽  
Krzysztof Sollohub

2015 ◽  
Vol 33 (13) ◽  
pp. 1654-1661 ◽  
Author(s):  
Y. Nikolova ◽  
J. Petit ◽  
A. Gianfrancesco ◽  
C. F. W. Sanders ◽  
J. Scher ◽  
...  

Revista Fitos ◽  
2020 ◽  
Vol 14 (4) ◽  
pp. 469-475
Author(s):  
Lucas Oliveira Rodrigues ◽  
Rachel Andrade de Faria ◽  
Marcos Martins Gouvêa ◽  
Carlos Augusto de Freitas Peregrino ◽  
Elizabeth Valverde Macedo ◽  
...  

Uncaria tomentosa (Willd. ex Schult.) DC. (Cat's claw) is a plant member of the Rubiaceae family, from the Amazon region, and used in traditional medicine as raw material for phytomedicines indicated for arthritis and osteoarthritis. This study aimed to evaluate the spray drying process parameters on the properties of different extracts obtained from Uncaria tomentosa. A reduced 24-1 multifactorial design was applied to evaluate the importance of the equipment variables (pump speed, spray nozzle diameter, air inlet temperature, and atomization airflow rate) in the process. Maltodextrin and acacia gum were used as carriers in a 1:1 (m/m) ratio, considering the solid residue content of the liquid plant extract. Process yield, moisture, and hygroscopicity were evaluated as dependent variables. Higher atomization airflow rate led to higher process yield for powdered dried extracts with maltodextrin. Higher temperature led to lower moisture contents regarding powdered dried extracts with acacia gum. No variable, for any carrier, was considered significant for hygroscopicity. The best spray drying configuration for the desired characteristics (i.e. lower hygroscopicity and moisture) used the larger spray nozzle with a diameter of 1.2 mm and the higher temperature of 150 °C, with both carriers.


2001 ◽  
Vol 16 (4) ◽  
pp. 1083-1089 ◽  
Author(s):  
X. L. Dong ◽  
B. K. Kim ◽  
C. J. Choi ◽  
K. S. Park ◽  
Z. D. Zhang

The magnetic Nd–Fe–B powders were prepared by a mechanochemical method, including the processes of spray drying, debinding, milling, H2 reduction, Ca reduction, and washing. The liquid solution dissolved with various metal salts was first spray-dried to prepare the precursor powders having uniformly dispersed Nd, Fe, and B components. The precursor powders in turn were subjected to the subsequent processes. The particle size of the resultant Nd–Fe–B powders was about 1 μm. Effects of the process parameters on phases, morphologies, microstructures, compositions, and thermal properties of the powders were investigated.


Solar Energy ◽  
2005 ◽  
Author(s):  
Yujie Cui ◽  
Mingsheng Liu ◽  
Kirk Conger

The Laboratory Air Handling Unit (LAHU) system for laboratory buildings has been developed and optimized. Theoretical study has concluded that the LAHU with optimal outside air control and optimal heat recovery control significantly reduces thermal energy use, saves pump power consumption and improves office indoor air quality. This paper presents validation experiments of LAHU energy performance in a large university research building including detailed experimental methodology, procedures and preliminary experimental energy savings results. The experiments establish that the LAHU can reduce annual heating by over 30% and can reduce heat recovery pump power by over 50% for this typical laboratory building.


Sign in / Sign up

Export Citation Format

Share Document