Synthesis of Nd2Fe14B powders by spray-drying and reduction–diffusion processes

2001 ◽  
Vol 16 (4) ◽  
pp. 1083-1089 ◽  
Author(s):  
X. L. Dong ◽  
B. K. Kim ◽  
C. J. Choi ◽  
K. S. Park ◽  
Z. D. Zhang

The magnetic Nd–Fe–B powders were prepared by a mechanochemical method, including the processes of spray drying, debinding, milling, H2 reduction, Ca reduction, and washing. The liquid solution dissolved with various metal salts was first spray-dried to prepare the precursor powders having uniformly dispersed Nd, Fe, and B components. The precursor powders in turn were subjected to the subsequent processes. The particle size of the resultant Nd–Fe–B powders was about 1 μm. Effects of the process parameters on phases, morphologies, microstructures, compositions, and thermal properties of the powders were investigated.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 608
Author(s):  
Csilla Bartos ◽  
Patrícia Varga ◽  
Piroska Szabó-Révész ◽  
Rita Ambrus

The absorption of non-steroidal anti-inflammatory drugs (NSAIDs) through the nasal epithelium offers an innovative opportunity in the field of pain therapy. Thanks to the bonding of chitosan to the nasal mucosa and its permeability-enhancing effect, it is an excellent choice to formulate microspheres for the increase of drug bioavailability. The aim of our work includes the preparation of spray-dried cross-linked and non-cross-linked chitosan-based drug delivery systems for intranasal application, the optimization of spray-drying process parameters (inlet air temperature, pump rate), and the composition of samples. Cross-linked products were prepared by using different amounts of sodium tripolyphosphate. On top of these, the micrometric properties, the structural characteristics, the in vitro drug release, and the in vitro permeability of the products were studied. Spray-drying resulted in micronized chitosan particles (2–4 μm) regardless of the process parameters. The meloxicam (MEL)-containing microspheres showed nearly spherical habit, while MEL was present in a molecularly dispersed state. The highest dissolved (>90%) and permeated (~45 µg/cm2) MEL amount was detected from the non-cross-linked sample. Our results indicate that spray-dried MEL-containing chitosan microparticles may be recommended for the development of a novel drug delivery system to decrease acute pain or enhance analgesia by intranasal application.


Author(s):  
RAMA RAO NADENDLA ◽  
LAKSHMI SWAPNA SAI ◽  
NIHITHA SANKA ◽  
SANTHI PRIYA NAGAM

Objective: The present study was focused to design an herbal formulation for the treatment of Alzheimer’s disease (AD) to develop the formulation using various techniques such as spray drying, centrifugation, and lyophilization and to conduct behavioral studies to evaluate the activity of the herbal formulation. Methods: Formulation contains herbal extracts such as curcumin, guggul, and ashwagandha. To develop this formulation, various techniques such as spray drying, centrifugation, and lyophilization were employed along with a natural polymer chitosan in various combinations of excipient. Preformulation studies such as solubility of herbal extracts and Fourier transmission infrared spectroscopy (FT-IR) studies for compatibility of the natural polymer with herbal extracts were studied. The formulation was characterized by tests such as particle size determination using optical microscopy, surface morphological evaluation using scanning electron microscopy (SEM), and behavioral testing by Morris water maze test using diazepam-induced amnesia method. Results: The particle size varied from 12.27 μ for normal chitosan to 3.59 μ for spray-dried chitosan. In the same way, the particle of normal formulation (12.9 μ) was about 4–5 times larger than that of spray-dried formulation (2.7 μ). The SEM images showed no proper morphology for chitosan, round surface with wrinkles for spray-dried chitosan, improper structures for normal formulation, and rounded smooth surface for spray-dried formulation. Significant p value was shown when the spray-dried test formulation was tested using diazepam-induced amnesia method. The transfer latency was noted on the 8th day and after 24 h of intraperitoneal administration of diazepam for the test group. Conclusion: In the present research study, an attempt was made to design and develop a novel drug delivery system using herbal medicine to treat AD. FT-IR compatibility study was carried out using the selected polymer and the herbal extracts using novel spray-drying techniques; behavioral studies were also done.


Author(s):  
Yuchuan Wang ◽  
Ying Cui ◽  
Bo Wang ◽  
Min Zhang

Skimmed milk powders (SMP) were produced by ultrasonic atomizing-assisted spray drying (UASD). It was found that UASD can produce high quality SMP (with < 5% moisture content and < 2% insolubility) at lower inlet temperatures (~130℃). The particle size of the UASD-SMP was 10 times smaller (decreased from ~20 µm to 4 µm) than the tranditionally spray-dried SMP and the color appeal of UASD-SMP was also better (L* value increased by > 6 %). Overall, this research shown that UASD can be used to produce small particle size and high quality SMP. Keywords: Skimmed milk powder; ultrasonic atomization; spray dryer; particle size distribution; color  


2019 ◽  
Vol 819 ◽  
pp. 246-251
Author(s):  
Pontip Benjasirimongkol ◽  
Suchada Piriyaprasarth ◽  
Pornsak Sriamornsak

Spray-dried emulsion is one of the useful strategies to enhance dissolution properties of poorly water-soluble drug for example resveratrol. Physical properties i.e. particle size and moisture content of spray-dried emulsions could affect their quality attributes. In this study, Box-Behnken design was performed in order to determine effect of formulation and spray drying condition parameters i.e. feed rate on responses including particle size and moisture content of resveratrol spray-dried emulsions. The spray-dried emulsions were prepared by varying content of low-methoxyl pectin (LMP) and caprylic/capric glycerides (CCG) and sprayed at different feed rate. Box-Behnken design results reveled that the particle size of spray-dried emulsions was significantly influenced by the content of LMP, interactions between LMP and CCG, interactions between LMP and feed rate. LMP content showed positive relationships with the particle size. The content of CCG had negative significantly effect on moisture content of the spray-dried emulsion. Mathematical models describing the relationships between studied parameters and responses provided good predictability. Based on model, the optimal formulation was prepared using 2.6% w/w of LMP, 9% w/w of CCG, and feed rate of 6.8 mL/min and the small particle size (~5.9 μm) and low moisture content (~5.6%) were obtained. The spray-dried emulsions were successfully prepared with satisfy quality. The Box-Behnken design would be an effective tool to elucidate influence of formulation and spray drying conditions on particle size and moisture content of the spray-dried emulsions. Further, the design aided in developing and optimizing the spray-dried emulsions with specified quality.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1674
Author(s):  
Zhenzhou Zhu ◽  
Mailing Wu ◽  
Jie Cai ◽  
Shuyi Li ◽  
Krystian Marszałek ◽  
...  

Jerusalem artichoke is an important natural matrix for inulin production. In this experiment, response surface methodology (RSM) was employed to optimize the spray-drying parameters in order to determine the maximal inulin yield. For this study, three independent variables (heating temperature (Tª, 110–120 °C), creep speed (V, 18–22 rpm) and pressure (P, 0.02–0.04 MPa)) were used in the experimental design. Using the Box–Behnken design, the optimal parameters obtained were: drying temperature 114.6 °C, creep speed 20.02 rpm, and pressure: 0.03 MPa. The inulin yield, water content and particle size of inulin obtained by spray-drying and freeze-drying were compared. In this regard, the spray-dried inulin consisted of a white powder having a fine particle size, and the freeze-dried inulin had a pale-yellow fluffy floc. On the other hand, the drying methods had a great influence on the appearance and internal structure of inulin powder, since the spray-dried inulin had a complete and uniform shape and size, whereas the freeze-dried inulin had a flocculated sheet structure. The analysis showed that the spray-drying led to a higher inulin yield, lower water content and better surface structure than freeze-drying.


Author(s):  
Eva Mayasari ◽  
Satrijo Saloko ◽  
Oke Anandika Lestari ◽  
Maria Ulfa

Free glutamic acid is a flavor enhancer compound that provided umami taste. San-sakng (Albertisia papuana Becc.) leaf has been used as a seasoning in the Dayaks tribe, West Kalimantan, Indonesia. The aim of this study was evaluated the effect of different drying inlet air temperature on physico-chemical of the spray dried san-sakng leaf. San-sakng leaf powders was produced using spray drying and maltodextrin as raw material. Completely randomized design was used with one factor, namely drying inlet air temperature on the spray drying process (130°C, 140°C, and 150°C). The results showed that moisture, solubility, bulk density, particle size, and encapsulation efficiency on the San-sakng leaf powders presented significantly affected by the drying inlet air temperature. Increasing inlet air temperature led to reduced moisture, bulk density, and particle size, whereas enhancing the solubility and encapsulation efficiency.


2017 ◽  
Vol 47 (4) ◽  
pp. 567-577 ◽  
Author(s):  
Saroj Kumar Giri ◽  
Shukadev Mangaraj ◽  
Lalan Kumar Sinha ◽  
Manoj Kumar Tripathi

Purpose Soy beverage is becoming more and more popular because it is touted as a healthy food containing useful phytochemicals and is free from lactose and cholesterol. The purpose of this paper is to optimize the spray drying process parameters for obtaining soy beverage powder with good reconstitution and handling properties. Design/methodology/approach Pre-concentrated soy beverage was dried in a laboratory model spray dryer, and the effects of inlet air temperature (180-220°C), feed rate (20-40 ml/min) and feed solid content (15-25 per cent) on some physical parameters and reconstitution properties (wettability and dispersibility) of spray-dried soy beverage powders were investigated. Second order polynomial response surface model was selected for the analysis of data and optimization of the process. Findings Spray drying of soy beverage at different processing conditions resulted in powders with particle size (volume mean diameter) in the range of 86 to 156 µm. Dispersibility and wetting time of the spray-dried soy beverage powders was found to be in the range of 56 to 78 per cent and 30 to 90 s respectively, under various drying conditions. Inlet air temperature was found to be the main factor affecting most of the quality parameters, followed by solid content of the feed. Temperature significantly affected the wettability, dispersibility, colour parameters, particle size and flowability of the powder at p ≤ 0.01. Lower temperature and higher feed solid content produced bigger-sized powder particles with better handling properties in terms of flowability and cohesiveness. A moderate inlet air temperature (196°C), higher feed solid content (24 per cent) and lower feed rate (27 ml/min) were found suitable for drying of soy beverage. Practical implications The study implied the possibility of producing powder from soy beverage using the spray-drying method and optimized drying conditions for obtaining soy beverage powder with good reconstitution properties. Originality/value The finding of this study demonstrated for the first time how the inlet air temperature, feed solid content and feed rate during spray-drying influenced different quality parameters of soy beverage powder. Further, an optimized drying condition has been identified.


Author(s):  
Saurabh Singh ◽  
Sachin Kumar Singh ◽  
Malti G. Chauhan ◽  
Bimlesh Kumar ◽  
Narendra Kumar Pandey ◽  
...  

Background: In the present study copper nanosuspension was prepared from Incinerated Copper Powder (ICP) by top down media milling. Glycyrrhiza glabra (GG) and Gum Acacia (GA) were used as stabilizers in the formulation. Methods: Box Behnken Design was used to investigate the effect of formulation and process variables on particle size and zeta potential and optimize their ratio to get target product profile. The ratio of GA and GG to ICP was varied along with milling time and its speed. Further the prepared nanosuspensions were solidified using spray drying. Results: The particle size was found to be decreased with the increase in GG to ICP ratio, milling time and milling speed, whereas, reverse effect on particle size was observed with an increase in GA to ICP ratio. The zeta potential was found to be increased with the increase in GG to CB ratio and milling speed and it decreased with the increase in GA to ICP ratio and milling time. The obtained value for particle size was 117.9 nm and zeta potential were -9.46 mV which was in close agreement with the predicted values by the design which was, 121.86 nm for particle size and -8.07 mV for zeta potential respectively. This indicated the reliability of optimization procedure. The percentage drug loading of copper in the nanosuspension was 88.26%. The micromeritic evaluation of obtained spray dried nanoparticles revealed that the particles were having good flow and compactibility. Conclusion: It can be concluded that application of media milling, design of experiment and spray drying have offered very good copper nanosuspension that has the potential to be scaled up on industrial scale.


2018 ◽  
Vol 17 (03) ◽  
pp. 77-85
Author(s):  
Tan D. Nguyen

Pouzolzia zeylanica is a kind of medicinal plant which is generally cultivated in Mekong Delta region. It owns many bioactive compounds that are known to possess antioxidant, antimicrobial and anticarcinogenic properties. This study aimed to optimize additional carrier concentration for spray drying of Pouzolzia zeylanica extract. Response Surface Methodology (RSM) with central composite design (CCD) was applied for optimization and investigation of the influence of maltodextrin (5÷15%, w/v) and carrageenan gum (0.06÷1.0%, w/v) concentration on the physicochemical characteristics of spray dried powder (bioactive compounds, moisture content as well as particle size distribution). The results showed that the optimum concentrations of maltodextrin and carrageenan gum were 8.8% w/v and 0.082% w/v, respectively. At these optimal conditions, the anthocyanin, flavonoid, polyphenol, tannin, moisture content and particle size of obtained spray dried powder were 5.77 mg cyanidin-3-glycoside equivalents (CE)/100 g; 29.49 mg quercetin equivalents (QE)/g; 28.35mg gallic acid equivalents (GAE)/g; 27.44 mg tannic acid equivalents (TAE)/g, 6.55% and 6.09 μm, respectively


2013 ◽  
Vol 31 (12) ◽  
pp. 1346-1353 ◽  
Author(s):  
E. M. Littringer ◽  
S. Zellnitz ◽  
K. Hammernik ◽  
V. Adamer ◽  
H. Friedl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document