scholarly journals Physico-Chemical and In Vitro Characterization of Chitosan-Based Microspheres Intended for Nasal Administration

Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 608
Author(s):  
Csilla Bartos ◽  
Patrícia Varga ◽  
Piroska Szabó-Révész ◽  
Rita Ambrus

The absorption of non-steroidal anti-inflammatory drugs (NSAIDs) through the nasal epithelium offers an innovative opportunity in the field of pain therapy. Thanks to the bonding of chitosan to the nasal mucosa and its permeability-enhancing effect, it is an excellent choice to formulate microspheres for the increase of drug bioavailability. The aim of our work includes the preparation of spray-dried cross-linked and non-cross-linked chitosan-based drug delivery systems for intranasal application, the optimization of spray-drying process parameters (inlet air temperature, pump rate), and the composition of samples. Cross-linked products were prepared by using different amounts of sodium tripolyphosphate. On top of these, the micrometric properties, the structural characteristics, the in vitro drug release, and the in vitro permeability of the products were studied. Spray-drying resulted in micronized chitosan particles (2–4 μm) regardless of the process parameters. The meloxicam (MEL)-containing microspheres showed nearly spherical habit, while MEL was present in a molecularly dispersed state. The highest dissolved (>90%) and permeated (~45 µg/cm2) MEL amount was detected from the non-cross-linked sample. Our results indicate that spray-dried MEL-containing chitosan microparticles may be recommended for the development of a novel drug delivery system to decrease acute pain or enhance analgesia by intranasal application.

Author(s):  
Anupam K Sachan ◽  
Saurabh Singh ◽  
Kiran Kumari ◽  
Pratibha Devi

Microspheres carrier system made from natural or synthetic polymers used in sustained release drug delivery system. The present study involves formulation and evaluation of floating microspheres of Curcumin for improving the drug bioavailability by prolongation gastric residence time. Curcumin, natural hypoglycemic agent is a lipophilic drug, absorbed poorly from the stomach, quickly eliminated and having short half-life so suitable to formulate floating drug delivery system for sustained release. Floating microspheres of curcumin were formulated by solvent evaporation technique using ethanol and dichloromethane (1:1) as organic solvent and incorporating various synthetic polymers as coating polymer, sustain release polymers and floating agent. The final formulation were evaluated various parameters such as compatibility studies, micrometric properties, In-vitro drug release and % buoyancy. FTIR studies showed that there were no interaction between drug and excipients. The surface morphology studies by SEM confirmed their spherical and smooth surface. The mean particles size were found to be 416-618µm, practical yield of microspheres was in the range of 60.21±0.052% - 80.87±0.043%, drug entrapment efficiency 47.4±0.065% - 77.9±0.036% and % buoyancy 62,24±0.161% - 88.63±0.413%. Result show that entraptmency increased as polymer (Eudragit RS100) conc. Increased. The drug release after 12 hrs. was 72.13% - 87.13% and it decrease as a polymer (HPMC, EC) concentration was decrease.


2001 ◽  
Vol 16 (4) ◽  
pp. 1083-1089 ◽  
Author(s):  
X. L. Dong ◽  
B. K. Kim ◽  
C. J. Choi ◽  
K. S. Park ◽  
Z. D. Zhang

The magnetic Nd–Fe–B powders were prepared by a mechanochemical method, including the processes of spray drying, debinding, milling, H2 reduction, Ca reduction, and washing. The liquid solution dissolved with various metal salts was first spray-dried to prepare the precursor powders having uniformly dispersed Nd, Fe, and B components. The precursor powders in turn were subjected to the subsequent processes. The particle size of the resultant Nd–Fe–B powders was about 1 μm. Effects of the process parameters on phases, morphologies, microstructures, compositions, and thermal properties of the powders were investigated.


2011 ◽  
Vol 282-283 ◽  
pp. 539-544 ◽  
Author(s):  
Jia Lei Li ◽  
Yuan Gang Zu ◽  
Xiu Hua Zhao ◽  
Zhi Gang An ◽  
Xiao Yu Sui ◽  
...  

Epigallocatechin-3-gallate (EGCG), a principal polyphenolic, which is most abundant and active component in tea. It is considered key to these healthful qualities. However, EGCG used in clinical application which is still shortcomings of short half-life and low bioavailability. Chitosan (CS) has been widely used in pharmaceutical and medical areas, particularly for its potential in the development of controlled release drug delivery systems due to its well properties. In this study, we prepared EGCG-loaded chitosan nanoparticles by ionic polymeric method using sodium tripolyphosphate(TPP) as ionic polymeric agent successfully. Results controlled conditions (concentration of CS, 2 mg/mL; pH = 5.4; volume of TPP(0.5 mg/mL), 6.6 mL; amount of EGCG, 15 mg; ionic polymeric time, 24 h at room temperature (0.5 mL/min))volume of TPP(0.5 mg/mL), 6.6 mL; amount of EGCG, 15 mg; ionic polymeric time, 24 h at room temperature (0.5 mL/min)) for entrapment efficiency, loading efficiency, mean particle size and Zeta potential, were found to be 62.3 %, 33.8 %, 141.5 ± 0.4 nm and -31.21 ± 0.54 mV, respectively, and CS-EGCG-NPS have well property of sustained release.


1992 ◽  
Vol 18 (5) ◽  
pp. 581-597 ◽  
Author(s):  
P. Vidgren ◽  
M. Vidgren ◽  
J. Arppe ◽  
T. Hakuli ◽  
E. Laine ◽  
...  

Author(s):  
Tran Thi Hai Yen ◽  
Tran Thi Nhu Quynh ◽  
Duong Thi Thuan ◽  
Pham Thi Minh Hue

The aims of study was formulation and evaluation of berberin (BBR) loaded proliposomes by spray-drying method. BBR proliposomes were evaluated for appearance, spray-drying efficiency, morphology and differential scanning calorimetry (DSC). Liposomes, obtained after hydration, were evaluated for particle size, size distribution, morphology and entrapment efficiency. The results showed that BBR proliposomes were prepared by spray-drying method with molar ratio of Hydrogenated soy phosphatidyl choline (HSPC): Sodium deoxycholat (NaDC): vitamin E (vtE): BBR = 7: 1: 6: 6. Mixture of manitol and Aerosil at weight ratio of 97:3 was used as carrier. Results of DSC showed that berberin was dispersed molecularly into proliposomes powder. BBR liposomes, obtained after hydration, had average particle diameter of about 29 μm and entrapment efficiency was 22.23%. Keywords Proliposomes, liposomes, berberin, sodium deoxycholate, spray-dried. References [1] W. Kong, J. Wei, A. Parrveen et al., Berberine is A Novel Cholesterol-Lowering Drug Working Through A Unique Mechanism Distinct From Statins, Nature Medicine, Vol. 10, No. 12, 2004, pp. 1344-1351, https://doi.org/10.1038/nm1135.[2] S. K. Kulkarni, A. Dhir, on The Mechanism of Antidepressant-Like Action of Berberine Chloride, European Journal of Pharmacology, Vol. 589, No. 1-3, 2008, pp. 163-172, https://doi.org/ 10.1016/j.ejphar.2008.05.043.[3] Y. T. Ho, J. S. Yang, T. C. Li et al., Berberine Suppresses in Vitro Migration and Invasion of Human SCC-4 Tongue Squamous Cancer Cells Through the Inhibitions of FAK, IKK, NF-Κb, U-PA and MMP-2 and-9, Cancer Letters, Vol. 279, No. 2, 2009, pp. 155-162, https://doi.org/10.1016/j.canlet.2009.01.033.[4] S. Muneer, Z. Masood, S. Butt et al., Proliposomes as Pharmaceutical Drug Delivery System: A Brief Review, Journal of Nanomedicine and Nanotechnology, Vol. 8, No. 3, 2017, pp. 448-450, https://doi.org/10.4172/2157-7439.1000448.[5] H. K. Omer, N. R. Hussein, A. Ferraz et al., Spray-Dried Proliposome Microparticles for High-Performance Aerosol Delivery Using a Monodose Powder Inhaler, AAPS PharmSciTech, Vol. 19, No. 5, 2018, pp. 2434-2448, https://doi.org/10.1208/s12249-018-1058-4.[6] T. T. H. Yen, T. T. N. Quynh, D. T. Thuan, P. T. M. Hue, Preparation of Berberin Liposomes, Contained Sodium Deoxycholate by Ethanol Injection Method, Journal of Pharmaceutical Research and Drug information, Vol. 11, No. 4, 2020, pp. 11-17 (in Vietnamese). [7] T. T. H. Yen, T. T. Hue, P. T. M. Hue et al., Preparation of Berberin Proliposomes by Film Deposition on Carrier Surface Method, VNU Journal of Science: Medical and Pharmaceutical Sciences, Vol. 36, No. 2, 2020, pp. 9-15, https://doi.org/10.25073/2588-1132/vnumps.4204.[8] R. G. Ahmed, S. Sherif, Z. Zainab et al., Silymarin Spray-Dried Proliposomes: Preparation, Characterization and Cytotoxic Evaluation, Drug Delivery Letters, Vol. 10, No. 1, 2020, pp. 14-23, https://doi.org/10.2174/2210303109666190722114211.[9] A. Bangham, M. M. Standish, J. C. Watkins Diffusion of Univalent Ions Across the Lamellae of Swollen Phospholipids, Journal of Molecular Biology, Vol. 13, No. 1, 1965, pp. 238-252.    


2021 ◽  
Vol 22 (22) ◽  
pp. 12368
Author(s):  
Alexander Vaneev ◽  
Victoria Tikhomirova ◽  
Natalia Chesnokova ◽  
Ekaterina Popova ◽  
Olga Beznos ◽  
...  

Topical drug delivery is one of the most challenging aspects of eye therapy. Eye drops are the most prevalent drug form, especially for widely distributed anterior segment eye diseases (cataracts, glaucoma, dry eye syndrome, inflammatory diseases, etc.), because they are convenient and easy to apply by patients. However, conventional drug formulations are usually characterized by short retention time in the tear film, insufficient contact with epithelium, fast elimination, and difficulties in overcoming ocular tissue barriers. Not more than 5% of the total drug dose administered in eye drops reaches the interior ocular tissues. To overcome the ocular drug delivery barriers and improve drug bioavailability, various conventional and novel drug delivery systems have been developed. Among these, nanosize carriers are the most attractive. The review is focused on the different drug carriers, such as synthetic and natural polymers, as well as inorganic carriers, with special attention to nanoparticles and nanomicelles. Studies in vitro and in vivo have demonstrated that new formulations could help to improve the bioavailability of the drugs, provide sustained drug release, enhance and prolong their therapeutic action. Promising results were obtained with drug-loaded nanoparticles included in in situ gel.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1212
Author(s):  
Sibusiso Alven ◽  
Blessing Atim Aderibigbe

Breast cancer is among the most common types of cancer in women and it is the cause of a high rate of mortality globally. The use of anticancer drugs is the standard treatment approach used for this type of cancer. However, most of these drugs are limited by multi-drug resistance, drug toxicity, poor drug bioavailability, low water solubility, poor pharmacokinetics, etc. To overcome multi-drug resistance, combinations of two or more anticancer drugs are used. However, the combination of two or more anticancer drugs produce toxic side effects. Micelles and dendrimers are promising drug delivery systems that can overcome the limitations associated with the currently used anticancer drugs. They have the capability to overcome drug resistance, reduce drug toxicity, improve the drug solubility and bioavailability. Different classes of anticancer drugs have been loaded into micelles and dendrimers, resulting in targeted drug delivery, sustained drug release mechanism, increased cellular uptake, reduced toxic side effects of the loaded drugs with enhanced anticancer activity in vitro and in vivo. This review article reports the biological outcomes of dendrimers and micelles loaded with different known anticancer agents on breast cancer in vitro and in vivo.


2019 ◽  
Vol 9 (5) ◽  
pp. 945-955 ◽  
Author(s):  
Christina Leichner ◽  
Randi Angela Baus ◽  
Max Jelkmann ◽  
Melanie Plautz ◽  
Jan Barthelmes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document