scholarly journals Mixed Euler–Lagrange approach to modeling fiber motion in high speed air flow

2005 ◽  
Vol 29 (3) ◽  
pp. 253-261 ◽  
Author(s):  
Y.C. Zeng ◽  
J.P. Yang ◽  
C.W. Yu
Author(s):  
P. S. Nagabhushan ◽  
A. Rossetti ◽  
B. Barabas ◽  
J. P. Schnitzler ◽  
A. Kefalas ◽  
...  

Water injection into a high speed air flow has been recently investigated by many scientists and is still an important field of research in gas turbine technology. To study the behavior of droplets in gas turbines, expensive experimental tests and their validation with analytical and Computational Fluid Dynamics (CFD) models are necessary. The Euler-Lagrange approach can be used to tackle these problems due to their capability in tracking particles along the domain, relative ease in formulating and applying them to the current industrial problems in terms of acceptable computational cost. However, providing spray boundary conditions using Euler-Lagrange approach is quite challenging because the spray pattern depends upon various parameters like spray angle, velocity, diameter distribution etc. In this paper, to obtain these parameters, two different approaches are described. The first approach depends on an analytical model for velocity and spray angle injection conditions and the second approach depends on an Euler free surface simulation. For diameter distribution, Rosin Rammler distribution function and experimental data are used. When combined together these lead to four particle injection conditions. The results achieved from all the four cases are compared with the experimental data of water droplet evaporation in a high speed air flow obtained from a hot air test rig operating at conditions of real gas turbines.


2013 ◽  
Vol 690-693 ◽  
pp. 2861-2865
Author(s):  
Sheng Xie ◽  
Yuan Sheng Zheng ◽  
Yong Chun Zeng

Melt blowing is an important process for producing nanofibrous nonwovens. Compared to another technology for producing nanofibrous nonwovens, electrospinning, melt blowing applies high-speed air flow field to attenuate the extruded polymer jet. In this study, the air flow field of a swirl die melt-blowing process was simulated by CFD software, Fluent 6.3. The swirling air profile was shown. Meanwhile, a high-speed camera was used to capture the fiber path below a single-orifice melt-blowing swirl die. The spiral motion of the fiber was revealed. The relationship between the fiber path and the air flow field was discussed. This paper shows the relationship between the fiber path and the air flow field in a swirl die melt-blowing process.


Author(s):  
V. S. IVANOV ◽  
◽  
V. S. AKSENOV ◽  
S. M. FROLOV ◽  
P. A. GUSEV ◽  
...  

Modern high-speed unmanned aerial vehicles are powered with small-size turbojets or ramjets. Existing ramjets operating on the thermodynamic cycle with de§agrative combustion of fuel at constant pressure are efficient at flight Mach numbers M ranging from about 2 to 6.


2021 ◽  
pp. 004051752110018
Author(s):  
Rui Hua Yang ◽  
Chuang He ◽  
Bo Pan ◽  
Hongxiu Zhong ◽  
Cundong Xu

The task of the fiber transport channel (FTC) is to transport the fibers from the carding roller to the rotor. Its geometric position in the spinning machine has a strong influence on the characteristics of the airflow field and the trajectory of the fiber motion in both the rotor and the FTC. In this paper, a three-dimensional pumping rotor spinning channel model was established using ANSYS-ICEM-CFD software with three different positions of the FTC (positions a–c). Further, the simulations of air distribution were performed using Fluent software. In addition, the discrete phase model was used to fit the fiber motion trajectory in the rotor. The simulation results showed that among the three types of FTC, position b is the optimal condition. The gradients of airflow velocity in the channel at position b were greater than those of the other two positions, which is conducive to straightening of the fiber.


Author(s):  
Sheng Wei ◽  
Brandon Sforzo ◽  
Jerry Seitzman

This paper describes experimental measurements of forced ignition of prevaporized liquid fuels in a well-controlled facility that incorporates non-uniform flow conditions similar to those of gas turbine engine combustors. The goal here is to elucidate the processes by which the initially unfueled kernel evolves into a self-sustained flame. Three fuels are examined: a conventional Jet-A and two synthesized fuels that are used to explore fuel composition effects. A commercial, high-energy recessed cavity discharge igniter located at the test section wall ejects kernels at 15 Hz into a preheated, striated crossflow. Next to the igniter wall is an unfueled air flow; above this is a premixed, prevaporized, fuel-air flow, with a matched velocity and an equivalence ratio near 0.75. The fuels are prevaporized in order to isolate chemical effects. Differences in early ignition kernel development are explored using three, synchronized, high-speed imaging diagnostics: schlieren, emission/chemiluminescence, and OH planar laser-induced fluorescence (PLIF). The schlieren images reveal rapid entrainment of crossflow fluid into the kernel. The PLIF and emission images suggest chemical reactions between the hot kernel and the entrained fuel-air mixture start within tens of microseconds after the kernel begins entraining fuel, with some heat release possibly occurring. Initially, dilution cooling of the kernel appears to outweigh whatever heat release occurs; so whether the kernel leads to successful ignition or not, the reaction rate and the spatial extent of the reacting region decrease significantly with time. During a successful ignition event, small regions of the reacting kernel survive this dilution and are able to transition into a self-sustained flame after ∼1–2 ms. The low aromatic/low cetane number fuel, which also has the lowest ignition probability, takes much longer for the reaction zone to grow after the initial decay. The high aromatic, more easily ignited fuel, shows the largest reaction region at early times.


2005 ◽  
Vol 127 (1) ◽  
pp. 182-186 ◽  
Author(s):  
Michael Flouros

Trends in aircraft engines have dictated high speed rolling element bearings up to 3 million DN or more with the consequence of having high amounts of heat rejection in the bearing chambers and high oil scavenge temperatures. A parametric study on the bearing power consumption has been performed with a 124 mm pitch circle diameter (PCD) ball bearing in a bearing chamber that has been adapted from the RB199 turbofan engine DN∼2×106. The operating parameters such as oil flow, oil temperature, sealing air flow, bearing chamber pressure, and shaft speed have been varied in order to assess the impact on the power consumption. This work is the first part of a survey aiming to reduce power losses in bearing chambers. In the first part, the parameters affecting the power losses are identified and evaluated.


The main aim of our project is to design and fabrication of pneumatic two step speed control of a cylinder. Initially the flow from the FRL retracts the cylinder when the push button is in its spring offset position. When it is pushed the flow pilots actuate. The air passes through the flow control and shuttle valve. Then the cylinder extends with high speed as the valve allows more air to enter the cylinder. When the piston reaches the position it operates the cam push button and pilot air flow through this and actuate 5/2 pilot operated valve and reaches flow control valve which permits less air. Then the flow through enters the shuttle valve to cylinder and allows the cylinder to extend at relatively low speed. At the end of extension stroke deactivating push button retracts the cylinder. Thus the speed of cylinder is controlled and project can be achieved


1949 ◽  
Vol 20 (8) ◽  
pp. 771-776 ◽  
Author(s):  
D. G. Marlow ◽  
C. R. Nisewanger ◽  
W. M. Cady
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document