Dynamic behavior of asphalt pavement structure under temperature-stress coupled loading

2013 ◽  
Vol 53 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Qiang Xue ◽  
Lei Liu ◽  
Ying Zhao ◽  
Yi-Jun Chen ◽  
Jiang-Shan Li
2013 ◽  
Vol 723 ◽  
pp. 729-736
Author(s):  
Hong Zhi Li

In order to study the cracks resisting mechanism of large stone asphalt mixture base, a multi-layer elastic theory program was used to calculate the loading stress in different pavement structures. Then a Finite Element model was established based on a twinkling heat conduct hypothesis to calculate temperature stress and strain of pavement structure when temperature dropped. Finally, the stress and strain of all the structural layers was calculated considering the coupling effect of loading and temperature. It is found that temperature stress which is caused by temperate quick dropped is far more lager than loading stress cause by standard loading, while considering the co-effect of vehicle loading and temperature quickly dropped. Thus it is revealed that cracking in pavement is mainly caused by temperature quickly dropped. By contrast, it is found that pavement stress and strain caused by loading and temperature of the structure with asphalt macadam mixture (ATB30) base are less than that of the conventional semi-rigid pavement. Finally, an asphalt macadam mixture base applied in asphalt pavement structure is believed to be an efficient way in reducing asphalt pavement cracking.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Zhizhong Zhao ◽  
Mengchen Li ◽  
Yu Wang ◽  
Wenwen Chen ◽  
Yulong Zhao ◽  
...  

2012 ◽  
Vol 256-259 ◽  
pp. 1748-1753
Author(s):  
Bin Zhao ◽  
Pei Wen Hao

As vehicle flow on arterial highway in Inner Mongolia sharply increased, the originally designed natural increase rate of 8% per year has been exceeded on the vehicle flow in some sections. According to statistics, monthly average vehicle flow on major section of G6 expressway has reached a standard flow of 67478 vehicles per day and night, of which in 70-80% are large ones for coal transportation. Therefore, pavement load and road capacity have exceed the designed expressway load capacity. At present, semi-rigid base asphalt pavement structure is still widely used for high-grade highway pavement in Inner Mongolia. With years of construction for such pavement structure, a great deal of valuable experience has been gained on construction technology. However, there are still a few deficiencies in the quality of raw materials, gradation control of asphalt mixture and adjustment of equipment, etc. Hohhot circle expressway connects with the G6 and G7 expressways, suffering from problems such as large vehicle flow and load overweight. This paper introduced a key technique that should be properly controlled during construction of such pavement structure, emphasized technique control and management of the following aspects, i.e. ballast sizes and gradation control, asphalt concrete mixture, adjustment of pavers, validation of mixing proportion in production and reasonable arrangement of process, and summarized corresponding technical measures taken during construction of asphalt pavement in this project.


2013 ◽  
Vol 405-408 ◽  
pp. 1725-1732 ◽  
Author(s):  
Guo Qi Tang ◽  
Dong Wei Cao ◽  
Ke Zhong ◽  
Xiao Qiang Yang

The interlayer bonding of double-layer porous asphalt pavement will show more variations with different construction technologies, such as one-step molding by double-layer (hot on hot) paver, or paving layer by layer (hot on cold) with or without tack coat, and the variations will definitely have influences on pavement structure. Different interlayer technologies are studied in this paper on three levels including simulation experiments on specimen by indoor preparation, calculation of pavement mechanics, and construction of testing road, so that optimal interlayer bonding technology for double-layer porous asphalt pavement is discussed in combination with its effect on permeability.


2021 ◽  
Vol 16 (2) ◽  
pp. 48-65
Author(s):  
Audrius Vaitkus ◽  
Judita Gražulytė ◽  
Andrius Baltrušaitis ◽  
Jurgita Židanavičiūtė ◽  
Donatas Čygas

Properly designed and maintained asphalt pavements operate for ten to twenty-five years and have to be rehabilitated after that period. Cold in-place recycling has priority over all other rehabilitation methods since it is done without preheating and transportation of reclaimed asphalt pavement. Multiple researches on the performance of cold recycled mixtures have been done; however, it is unclear how the entire pavement structure (cold recycled asphalt pavement overlaid with asphalt mixture) performs depending on binding agents. The main objective of this research was to evaluate the performance of cold in-place recycled asphalt pavements considering binding agents (foamed bitumen in combination with cement or only cement) and figure out which binder leads to the best pavement performance. Three road sections rehabilitated in 2000, 2003, and 2005 were analysed. The performance of the entire pavement structure was evaluated in terms of the International Roughness Index, rut depth, and pavement surface distress in 2013 and 2017.


Sign in / Sign up

Export Citation Format

Share Document