Key Technique on the Process Control for Construction of Hohhot Circle Expressway Asphalt Pavements

2012 ◽  
Vol 256-259 ◽  
pp. 1748-1753
Author(s):  
Bin Zhao ◽  
Pei Wen Hao

As vehicle flow on arterial highway in Inner Mongolia sharply increased, the originally designed natural increase rate of 8% per year has been exceeded on the vehicle flow in some sections. According to statistics, monthly average vehicle flow on major section of G6 expressway has reached a standard flow of 67478 vehicles per day and night, of which in 70-80% are large ones for coal transportation. Therefore, pavement load and road capacity have exceed the designed expressway load capacity. At present, semi-rigid base asphalt pavement structure is still widely used for high-grade highway pavement in Inner Mongolia. With years of construction for such pavement structure, a great deal of valuable experience has been gained on construction technology. However, there are still a few deficiencies in the quality of raw materials, gradation control of asphalt mixture and adjustment of equipment, etc. Hohhot circle expressway connects with the G6 and G7 expressways, suffering from problems such as large vehicle flow and load overweight. This paper introduced a key technique that should be properly controlled during construction of such pavement structure, emphasized technique control and management of the following aspects, i.e. ballast sizes and gradation control, asphalt concrete mixture, adjustment of pavers, validation of mixing proportion in production and reasonable arrangement of process, and summarized corresponding technical measures taken during construction of asphalt pavement in this project.

2021 ◽  
Vol 16 (2) ◽  
pp. 48-65
Author(s):  
Audrius Vaitkus ◽  
Judita Gražulytė ◽  
Andrius Baltrušaitis ◽  
Jurgita Židanavičiūtė ◽  
Donatas Čygas

Properly designed and maintained asphalt pavements operate for ten to twenty-five years and have to be rehabilitated after that period. Cold in-place recycling has priority over all other rehabilitation methods since it is done without preheating and transportation of reclaimed asphalt pavement. Multiple researches on the performance of cold recycled mixtures have been done; however, it is unclear how the entire pavement structure (cold recycled asphalt pavement overlaid with asphalt mixture) performs depending on binding agents. The main objective of this research was to evaluate the performance of cold in-place recycled asphalt pavements considering binding agents (foamed bitumen in combination with cement or only cement) and figure out which binder leads to the best pavement performance. Three road sections rehabilitated in 2000, 2003, and 2005 were analysed. The performance of the entire pavement structure was evaluated in terms of the International Roughness Index, rut depth, and pavement surface distress in 2013 and 2017.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 889 ◽  
Author(s):  
Chengdong Xia ◽  
Songtao Lv ◽  
Lingyun You ◽  
Dong Chen ◽  
Yipeng Li ◽  
...  

Although the rutting resistance, fatigue cracking, and the resistance to water and frost are important for the asphalt pavement, the strength of asphalt mixture is also an important factor for the asphalt mixture design. The strength of asphalt mixture is directly associated with the overall performance of asphalt mixture. As a top layer material of asphalt pavement, the strength of asphalt mixture plays an indispensable role in the top structural bearing layer. In the present design system, the strength of asphalt pavement is usually achieved via the laboratory tests. The stress states are usually different for the different laboratory approaches. Even at the same stress level, the laboratory strengths of asphalt mixture obtained are significantly different, which leads to misunderstanding of the asphalt mixtures used in asphalt pavement structure design. The arbitrariness of strength determinations affects the effectiveness of the asphalt pavement structure design in civil engineering. Therefore, in order to overcome the design deviation caused by the randomness of the laboratory strength of asphalt mixtures, in this study, the direct tension, indirect tension, and unconfined compression tests were implemented on the specimens under different loading rates. The strength model of asphalt mixture under different loading modes was established. The relationship between the strength ratio and loading rate of direct tension, indirect tension, and unconfined compression tests was adopted separately. Then, one unified strength model of asphalt mixture with different loading modes was established. The preliminary results show that the proposed unified strength model could be applied to improve the accurate degree of laboratory strength. The effectiveness of laboratory-based asphalt pavement structure design can therefore be promoted.


2014 ◽  
Vol 580-583 ◽  
pp. 632-635
Author(s):  
Li Ya Su

With the rapid development of traffic cause in our country, the operating requirement of driving load factors to pavement structure become higher and higher. The Semi-rigid base asphalt pavement structure exposed some defects and shortcomings, so the study of flexible base asphalt pavement structure is put on the agenda under the circumstances.Based on the research achievements at home and abroad of the existing asphalt pavement structure , choosing different elastic modulus and thickness to calculate and analyze the flexible base by ANSYS, gaining the law and trend of mechanics response (the vertical displacement and tensile stress) about pavement structure for the flexible base pavement of each layer foundation to provide the design reference.


2011 ◽  
Vol 97-98 ◽  
pp. 290-296
Author(s):  
Wei Guang Li ◽  
Zhi Dong Han ◽  
Zhen Bei Lv ◽  
Yan Hong Duan

It is important to reduce asphalt mixture strong absorption characteristics to improve anti-rutting ability and reduce the urban heat island effect. This paper firstly studies the suction and exothermic regular pattern of existing three types, five kinds of asphalt pavement structure. It turns out that there are differences in suction and exothermic characteristics of different types of pavement structure. Suspension close-grained type structure has higher adiabatic heating; gap-type skeleton has faster speed of suction and exothermic; and dense skeleton has more total quantity of heat storage. Accordingly, test and analysis of cooling effect of Gap-type skeleton asphalt pavement has conducted by adopting smear reflective materials to reduce reflectance and surface adding insulation materials, The results show that reducing reflectivity is the best way which can reduce by 5 centigrade around. In addition , improving effectiveness has also been studied by adding light-colored stone partly replacing mineral aggregate, and substituting busing mullite for aggregate below2.36 mm is the best cooling way ,which can reduce by 3.3 centigrade.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Hui Wang ◽  
Zepeng Fan ◽  
Jiupeng Zhang

The rutting performance of asphalt pavement structure relies on the high temperature properties of asphalt mixture as well as the pavement structure and thickness. In order to investigate the influence of the structure and thickness, a full-depth wheel tracking test is developed in this research by improving the conventional wheel tracking test apparatus. The newly proposed test method is capable of varying its load speed and load size, controlling its specimen temperature gradient, and simulating the support conditions of actual asphalt pavement. The full-depth wheel tracking test based rutting performance evaluation of different asphalt pavement structures indicates that it is not reasonable to explain the rutting performance of asphalt pavement structure from the point of view of single-layer asphalt mixture rutting performance. The developed full-depth wheel tracking test can be used to distinguish rutting performance of different asphalt pavement structures, and two of five typical asphalt pavement structures commonly used in Shanxi Province were suggested for use in practical engineering.


2009 ◽  
Vol 79-82 ◽  
pp. 1149-1152
Author(s):  
Hong Bing Guo ◽  
Shuan Fa Chen

The reflective cracking in asphalt surface is a technical problem that exists in the semi-rigid base asphalt pavement structure and the rigid base asphalt pavement structure, how to control its emergence and development is still a major problem for road engineering. At present, researches on the anti-cracking performance for Open-graded Large Stone asphalt Mix (OLSM) in China almost remain in the test road observations, very few study the mechanism of its anti-cracking from the mechanical point. Aiming at this problem, a method of using OLSM as the cracking relief layer is proposed, large mineral aggregate, low asphalt content and a great deal of void in OLSM can dissipate or absorb stress and strain around the crack. The 3-D finite element method is used to analyze the crack-alleviating layer of ordinary asphalt concrete and OLSM, and the large-scale commercial finite element software of ABAQUS is used to do numerical simulation analysis for the lean concrete base asphalt pavement structure with OLSM, the analysis result indicates that temperature-load coupling stress of OLSM are less than that of ordinary asphalt concrete. Depending on the test road on an expressway, research on the anti-crack mechanism of OLSM has been conducted. The investigation of the test road and the result of the theoretical calculation indicate that OLSM can prevent lean concrete base asphalt pavement from the reflective cracking effectively, OLSM has good anti-cracking performance, it is an effective material to alleviate the reflective cracking. As the crack-alleviating layer, OLSM can significantly enhance the anti-cracking ability of the semi-rigid base asphalt pavement structure and the rigid base asphalt pavement structure.


2016 ◽  
Vol 858 ◽  
pp. 312-315
Author(s):  
Jing Wang ◽  
Jin Yan ◽  
Miao Miao Tian ◽  
Ya Fei Li

With the implementation of the "One Belt, one Road" national strategy, the western region traffic can develop rapidly. This paper aims to improve the service performance in Inner Mongolia cold and heavy-load asphalt pavement through research. The mix design and performance verification of Zhuozi mountain mixture is the main line, in order to get a good fit to the local situation, and draw the key technical indicators of the design.


2012 ◽  
Vol 594-597 ◽  
pp. 1402-1406 ◽  
Author(s):  
Yue Zhang ◽  
Yun Long Zhao ◽  
Bao Yang Yu

In order to overcome the weakness of semi-rigidity base layer,the road performance of the SRX(Solution Road RomixSoilfix) stabilized base material and the mechanics response of asphalt pavement with the base layer stabilized by SRX have been studied in this paper. The CBR value and resilient modulus of SRX stabilized base material were given by indoor test. Based on the multiple layer elastic theory, both the mechanical responses of asphalt pavement structure with the SRX stabilized base and semi-rigid base were given, and according to the calculation results, the two kinds of pavement structure fatigue life were analyzed. The results have shown that the CBR value of SRX flexible material is greater than that of graded crushed stone; the SRX stable material can be used as pavement base layer, but the fatigue performance of SRX flexible base materials should be paid much attention.


Sign in / Sign up

Export Citation Format

Share Document