Design, manufacture and testing of porous materials with ordered and random porosity: Application to porous medium burners

2019 ◽  
Vol 158 ◽  
pp. 113724 ◽  
Author(s):  
Mykhailo Samoilenko ◽  
Patrice Seers ◽  
Patrick Terriault ◽  
Vladimir Brailovski
2013 ◽  
Vol 135 (6) ◽  
Author(s):  
D. A. Nield ◽  
A. V. Kuznetsov

This note deals with three main themes. The first is a discussion of the early literature on convection in porous media. The second is a brief overview of current analytical modeling of single-phase convection in saturated porous media and in composite fluid/porous-medium domains. The third is a brief discussion of some pertinent recent studies involving nanofluids, cellular porous materials, bidisperse and tridisperse porous media.


Author(s):  
Sanjay Sharma ◽  
Dennis Siginer

Simulation of fluid flow in porous materials depends upon the accuracy of permeability measurement. This study details the development of an acoustical method to determine permeability of porous medium. Standardized acoustical testing for low frequency using impedance tube is carried out to determine the acoustical properties of the fibers. Physical properties of porous medium are determined by reverse calculation from the acoustical properties. The acoustical method is validated by comparing the measured acoustical properties of the porous medium by the analytical method. A variety of foams and fibers are tested using this methodology.


2008 ◽  
Vol 22 (09n11) ◽  
pp. 1215-1220
Author(s):  
SOTO AKI KIDA ◽  
KEITA FUKUSHIMA ◽  
MASAYA MATSUMOTO

Impact stress wave propagating through porous materials is investigated in order to examine the ability of the shock absorbing effect. The specimens are modeled as the porous medium with different porous diameters made of the acrylic resin plate. When these models are impacted with different impact velocities, the impact stress waves propagating before and after the porous parts are measured using the strain gages in the experiments. As the reduction effect of the impact stress wave propagating in the porous medium, we pay attention to the maximum stresses and the duration times from the histories of the impact stress waves. One-dimensional wave theory and dynamic element method simulated this model are applied in order to explain these phenomena.


Author(s):  
V. G. Zhukov ◽  
N. D. Lukin ◽  
V. M. Chesnokov

The article discusses the method of representing the three dimensionless geometric characteristics of porous materials in the form of statistical functions. The technique allows to obtain formulas for histograms of porous materials. The study relates to the analytical development of a method for determining the dimensionless parameters of food porous media. As an example, we consider a porous material similar in geometrical characteristics to a typical food product with a homogeneous and isotropic porous medium similar to starch, finely divided food additives, and flour. The study is based on the statistical lognormal distribution of random variables and the analytical relationship between the three dimensionless integral parameters of porous systems. The formulas of three dimensionless geometric parameters of a porous medium are obtained analytically: discontinuity, transparency, and porosity. They take into account the statistics of random pore size distribution. The formulas include an experimental integral parameter of porosity, defined by standard techniques. It corrects the results of the automated determination of the pore size distribution. The formulas allow calculating the influence of individual size groups of pores or of their entire size ensemble, which is important in calculating heat and mass transfer processes in porous food, chemical and other technologies. The considered technique allows to apply it in similar studies for statistical tasks of various types.


2017 ◽  
Vol 27 (9) ◽  
pp. 1325-1351 ◽  
Author(s):  
MY Li ◽  
YJ Cao ◽  
WQ Shen ◽  
JF Shao

In this work, a multiscale model based on the Fast Fourier Transform (FFT) technique is applied to describe the mechanical behavior of porous materials. The effects of the microstructures (such as pore shape, number, size, distribution and orientation) on the overall strength of the porous medium and its microstress distribution are fully studied. The elastoplastic model is further extended by including a damage process. The influences of microstructure on the damage evolution of the porous medium are discussed and illustrated numerically. Then the proposed multiscale damage model is applied to study the macroscopic behavior of porous sandstone. According to the microstructure of the studied material, a representative elementary volume with randomly distributed spherical pores is considered. The solid phase of the sandstone is assumed to obey the Drucker–Prager criterion. Taking advantage of the FFT-based method, the evolution of generated damage is clearly illustrated during the loading process at the microscopic level. Comparisons between numerical results and experimental data show the efficiency of the proposed numerical model.


Author(s):  
Vitalii Molchanov ◽  

The paper discusses the laws behind the filtering procedures of process liquids through porous materials. At metalwork finishing operations, the use of cutting fluids is of particular importance. During operation, liquids are continuously and intensively contaminated with solid metal parts. To restore the original properties, process fluids are cleaned of mechanical admixtures. The most widely used methods for purifying process liquids are those by filtration. The use of filtration for the purification of process fluids is most effective, since filtering through a layer of porous materials results in complete extraction and removal of solids from liquids. However, the structural features of the pores in the porous environment trigger a number of specific phenomena that arise when liquids move in the porous channels of a porous medium. The research purpose is to discuss and establish the laws behind the filtering procedures of process fluids through porous materials. When filtering process liquids through a layer of porous materials, the porous medium of the filter membrane expands with a change in porosity. The change in porosity occurs due to a decrease in the pore volume of the porous environment, since the solid parts together with the liquid penetrate into the porous channels of the porous environment and hover in them. The conducted studies permitted the authors to identify and study the laws of the filtering process and establish the law of change in porosity of the porous environment. Based on the established law, a differential equation is derived. It allowed, for given initial and border-line conditions, stating the problem of filtering the liquid through a layer of solid particles of a variable porous medium of the filtering membrane. The solution of the non-stationary problem with initial and border-line conditions by the finite difference method allowed determining the hydrodynamic parameters of fluid filtration through a layer of particles of the porous environment of the filter membrane and to obtain a solution of the non-stationary boundary problem of fluid filtration in a deformed porous medium. The use of research results promotes complete clarification of the process fluid and thorough removal of the solid parts of valuable secondary raw materials of metal processing, in particular for powder metallurgy, facilitates the launching of waste-free production, and increases the level of environmental cleanliness in the operating area of cutting fluids.


2021 ◽  
Vol 91 (4) ◽  
pp. 553
Author(s):  
Э.С. Батыршин ◽  
О.А. Солнышкина ◽  
Ю.А. Питюк

The trapping of bubbles during the impregnation of micromodel of dual scale porisity media by a liquid are experimentally studied. The micromodel of a porous medium is formed by a system of cylindrical pins spatially ordered in a flat microchannel. It is shown that the content of bubbles in a porous medium after impregnation depends on the capillary number and wettability of the pore surface. The proposed approach can be used to solve the practically important problem on studying and selecting optimal mechanisms to control the impregnation process of porous materials to minimize the total amount of trapped bubbles.


Sign in / Sign up

Export Citation Format

Share Document