An automated drift correction method for in situ NaI(Tl)-detectors used in extreme environments

2021 ◽  
pp. 110069
Author(s):  
R.R. le Roux ◽  
J. Bezuidenhout
2021 ◽  
Vol 13 (10) ◽  
pp. 1927
Author(s):  
Fuqin Li ◽  
David Jupp ◽  
Thomas Schroeder ◽  
Stephen Sagar ◽  
Joshua Sixsmith ◽  
...  

An atmospheric correction algorithm for medium-resolution satellite data over general water surfaces (open/coastal, estuarine and inland waters) has been assessed in Australian coastal waters. In situ measurements at four match-up sites were used with 21 Landsat 8 images acquired between 2014 and 2017. Three aerosol sources (AERONET, MODIS ocean aerosol and climatology) were used to test the impact of the selection of aerosol optical depth (AOD) and Ångström coefficient on the retrieved accuracy. The initial results showed that the satellite-derived water-leaving reflectance can have good agreement with the in situ measurements, provided that the sun glint is handled effectively. Although the AERONET aerosol data performed best, the contemporary satellite-derived aerosol information from MODIS or an aerosol climatology could also be as effective, and should be assessed with further in situ measurements. Two sun glint correction strategies were assessed for their ability to remove the glint bias. The most successful one used the average of two shortwave infrared (SWIR) bands to represent sun glint and subtracted it from each band. Using this sun glint correction method, the mean all-band error of the retrieved water-leaving reflectance at the Lucinda Jetty Coastal Observatory (LJCO) in north east Australia was close to 4% and unbiased over 14 acquisitions. A persistent bias in the other strategy was likely due to the sky radiance being non-uniform for the selected images. In regard to future options for an operational sun glint correction, the simple method may be sufficient for clear skies until a physically based method has been established.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2712 ◽  
Author(s):  
Jihaeng Yi

This paper presents a monolithic sapphire pressure sensor that is constructed from two commercially available sapphire wafers through a combination of reactive-ion etching and wafer bonding. A Fabry–Perot (FP) cavity is sealed fully between the adhesive-free bonded sapphire wafers and thus acts as a pressure transducer. A combination of standard silica fiber, bonded sapphire wafers and free-space optics is proposed to couple the optical signal to the FP cavity of the sensor. The pressure in the FP cavity is measured by applying both white-light interferometry and diaphragm deflection theory over a range of 0.03 to 3.45 MPa at room temperature. With an all-sapphire configuration, the adhesive-free bonded sapphire sensor is expected to be suitable for in-situ pressure measurements in extreme harsh environments.


2019 ◽  
Vol 11 (24) ◽  
pp. 2889 ◽  
Author(s):  
Shaktiman Singh ◽  
Anshuman Bhardwaj ◽  
Atar Singh ◽  
Lydia Sam ◽  
Mayank Shekhar ◽  
...  

The surface and near-surface air temperature observations are primary data for glacio-hydro-climatological studies. The in situ air temperature (Ta) observations require intense logistic and financial investments, making it sparse and fragmented particularly in remote and extreme environments. The temperatures in Himalaya are controlled by a complex system driven by topography, seasons, and cryosphere which further makes it difficult to record or predict its spatial heterogeneity. In this regard, finding a way to fill the observational spatiotemporal gaps in data becomes more crucial. Here, we show the comparison of Ta recorded at 11 high altitude stations in Western Himalaya with their respective land surface temperatures (Ts) recorded by Moderate Resolution Imagining Spectroradiometer (MODIS) Aqua and Terra satellites in cloud-free conditions. We found remarkable seasonal and spatial trends in the Ta vs. Ts relationship: (i) Ts are strongly correlated with Ta (R2 = 0.77, root mean square difference (RMSD) = 5.9 °C, n = 11,101 at daily scale and R2 = 0.80, RMSD = 5.7 °C, n = 3552 at 8-day scale); (ii) in general, the RMSD is lower for the winter months in comparison to summer months for all the stations, (iii) the RMSD is directly proportional to the elevations; (iv) the RMSD is inversely proportional to the annual precipitation. Our results demonstrate the statistically strong and previously unreported Ta vs. Ts relationship and spatial and seasonal variations in its intensity at daily resolution for the Western Himalaya. We anticipate that our results will provide the scientists in Himalaya or similar data-deficient extreme environments with an option to use freely available remotely observed Ts products in their models to fill-up the spatiotemporal data gaps related to in situ monitoring at daily resolution. Substituting Ta by Ts as input in various geophysical models can even improve the model accuracy as using spatially continuous satellite derived Ts in place of discrete in situ Ta extrapolated to different elevations using a constant lapse rate can provide more realistic estimates.


2012 ◽  
Vol 500 ◽  
pp. 397-402 ◽  
Author(s):  
Hai Lei Liu ◽  
Li Sheng Xu ◽  
Ji Lie Ding ◽  
Ba Sang ◽  
Xiao Bo Deng

Based on the thermal radiative transfer equation (RTE), a new atmospheric correction method named Single Band Water Vapor Dependent (SBWVD) method is developed for land surface temperature (LST) retrieval for the FY-3A Medium Resolution Spectral Imager (MERSI) with only one thermal infrared (TIR) channel. Assuming that the surface emissivity is known, water vapor content (WVC) is the only one parameter for input to the SBWVD algorithm to retrieve LST from MERSI TIR observations. FY-3A MERSI Level 2 water vapor product is employed to evaluate the performance of the proposed method, and a 2-D data interpolation procedure is applied in order to match the MERSI L1B data in spatial resolution. Some tests, including numerical simulation for MERSI sensor and the synchronous measurements of MERSI and the radiosondes for the radiative calibration of the FY-3A tests in Qinghai Lake, have been carried out for the proposed algorithm, respectively. The results show that the difference between the retrieved LST and the in-situ measurements is less than 0.6 K for most situations. The comparison with the MODIS LST products (V5) shows that the root mean square error (RMSE) is under 0.72 K. Thus, our proposed new algorithm is applicable for the atmospheric correction and LST retrieval using MERSI TIR channel observations.


2016 ◽  
Author(s):  
Birger Bohn ◽  
Dwayne E. Heard ◽  
Nikolaos Mihalopoulos ◽  
Christian Plass-Dülmer ◽  
Rainer Schmitt ◽  
...  

Abstract. Atmospheric O3 → O(1D) photolysis frequencies j(O1D) are crucial parameters for atmospheric photochemistry because of their importance for primary OH formation. Filter radiometers have been used for many years for in-situ field measurements of j(O1D). Typically the relationship between the output of the instruments and j(O1D) is non-linear because of changes in the shape of the solar spectrum dependent on solar zenith angles and total ozone columns. These non-linearities can be compensated by a correction method based on laboratory measurements of the spectral sensitivity of the filter radiometer and simulated solar actinic flux density spectra. Although this correction is routinely applied, the results of a previous field comparison study of several filter radiometers revealed that some corrections were inadequate. In this work the spectral characterisations of seven instruments were revised and the correction procedures were updated and harmonized considering recent recommendations of absorption cross sections and quantum yields of the photolysis process O3 → O(1D). Previous inconsistencies were largely removed using these procedures. In addition, optical interference filters were replaced to improve the spectral properties of the instruments. Successive determinations of spectral sensitivities and field comparisons of the modified instruments with a spectroradiometer reference confirmed the improved performance. Overall, filter radiometers remain a low-maintenance alternative of spectroradiometers for accurate measurements of j(O1D) provided their spectral properties are known and potential drifts in sensitivities are monitored by regular calibrations with standard lamps or reference instruments.


2020 ◽  
Author(s):  
Shaoguang Li ◽  
Jun Dai ◽  
Man Zhu ◽  
Netzahualcóyotl Arroyo-Currás ◽  
Hongxing Li ◽  
...  

AbstractThe ability to track the levels of specific molecules, such as drugs, metabolites, and biomarkers, in the living body, in real time and for long durations would improve our understanding of health and our ability to diagnose, treat and monitor disease. To this end, we are developing electrochemical aptamer-based (E-AB) biosensors, a general platform supporting high-frequency, real-time molecular measurements in the living body. Here we report that the addition of an agarose hydrogel protective layer to E-AB sensors significantly improves their baseline stability when deployed in the complex, highly time-varying environments found in vivo. The improved stability is sufficient that these hydrogel-protected sensors achieved good baseline stability when deployed in situ in the veins, muscles, bladder, or tumors of living rats without the use of the drift correction approaches traditionally required in such placements. Finally, this improved stability is achieved without any significant, associated “costs” in terms of detection limits, response times, or biocompatibility.


Sign in / Sign up

Export Citation Format

Share Document