Comparison of studies on flow and flame structures in different swirl combustors

2018 ◽  
Vol 80 ◽  
pp. 29-37 ◽  
Author(s):  
L.X. Zhou
Author(s):  
Chi-Rong Liu ◽  
Hsin-Yi Shih

The purpose of this study is to investigate the combustion and emission characteristics of syngas fuels applied in a micro gas turbine, which is originally designed for a natural gas fired engine. The computation results were conducted by a numerical model, which consists of the three-dimension compressible k–ε model for turbulent flow and PPDF (presumed probability density function) model for combustion process. As the syngas is substituted for methane, the fuel flow rate and the total heat input to the combustor from the methane/syngas blended fuels are varied with syngas compositions and syngas substitution percentages. The computed results presented the syngas substitution effects on the combustion and emission characteristics at different syngas percentages (up to 90%) for three typical syngas compositions and the conditions where syngas applied at fixed fuel flow rate and at fixed heat input were examined. Results showed the flame structures varied with different syngas substitution percentages. The high temperature regions were dense and concentrated on the core of the primary zone for H2-rich syngas, and then shifted to the sides of the combustor when syngas percentages were high. The NOx emissions decreased with increasing syngas percentages, but NOx emissions are higher at higher hydrogen content at the same syngas percentage. The CO2 emissions decreased for 10% syngas substitution, but then increased as syngas percentage increased. Only using H2-rich syngas could produce less carbon dioxide. The detailed flame structures, temperature distributions, and gas emissions of the combustor were presented and compared. The exit temperature distributions and pattern factor (PF) were also discussed. Before syngas fuels are utilized as an alternative fuel for the micro gas turbine, further experimental testing is needed as the modeling results provide a guidance for the improved designs of the combustor.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6744
Author(s):  
Yang Yang ◽  
Zhijian Yu

The recirculation zone and the swirl flame behavior can be influenced by the burner exit shape, and few studies have been made into this structure. Large eddy simulation was carried out on 16 cases to distinguish critical geometry factors. The time series of the heat release rate were decomposed using seasonal-trend decomposition procedure to exclude the effect of short physical time. Dynamic mode decomposition (DMD) was performed to separate flame structures. The frequency characteristics extracted from the DMD modes were compared with those from the flame transfer functions. Results show that the flame cases can be categorized into three types, all of which are controlled by a specific geometric parameter. Except one type of flame, they show nonstationary behavior by the Kwiatkowski–Phillips–Schmidt–Shin test. The frequency bands corresponding to the coherent structures are identified. The flame transfer function indicates that the flame can respond to external excitation in the frequency range 100–300 Hz. The DMD modes capture the detailed flame structures. The higher frequency bands can be interpolated as the streamwise vortices and shedding vortices. The DMD modes, which correspond to the bands of flame transfer functions, can be estimated as streamwise vortices at the edges.


1998 ◽  
Vol 27 (1) ◽  
pp. 1229-1237 ◽  
Author(s):  
T.S. Cheng ◽  
Y.-C. Chao ◽  
D.-C. Wu ◽  
T. Yuan ◽  
C.-C. Lu ◽  
...  

2017 ◽  
Vol 50 ◽  
pp. 7-14 ◽  
Author(s):  
Hongming Zhang ◽  
Xianfeng Chen ◽  
Ying Zhang ◽  
Yi Niu ◽  
Bihe Yuan ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Liang Lv ◽  
Jianguo Tan ◽  
Yue Hu

Computed tomography of chemiluminescence (CTC) is a promising technique for combustion diagnostics, providing instantaneous 3D information of flame structures, especially in harsh circumstance. This work focuses on assessing the feasibility of CTC and investigating structures of hydrogen-air premixed laminar flames using CTC. A numerical phantom study was performed to assess the accuracy of the reconstruction algorithm. A well-designed burner was used to generate stable hydrogen-air premixed laminar flames. TheOH⁎chemiluminescence intensity field reconstructed from 37 views using CTC was compared to theOH⁎chemiluminescence distributions recorded directly by a single ICCD camera from the side view. The flame structures in different flow velocities and equivalence ratios were analyzed using the reconstructions. The results show that the CTC technique can effectively indicate real distributions of the flame chemiluminescence. The height of the flame becomes larger with increasing flow velocities, whereas it decreases with increasing equivalence ratios (no larger than 1). The increasing flow velocities gradually lift the flame reaction zones. A critical cone angle of 4.76 degrees is obtained to avoid blow-off. These results set up a foundation for next studies and the methods can be further developed to reconstruct 3D structures of flames.


2016 ◽  
Vol 31 (3) ◽  
pp. 2260-2273 ◽  
Author(s):  
N. Sebbar ◽  
P. Habisreuther ◽  
H. Bockhorn ◽  
I. Auzmendi-Murua ◽  
J. W. Bozzelli

2021 ◽  
Author(s):  
Chao Xu ◽  
Muhsin Ameen ◽  
Pinaki Pal ◽  
Sibendu Som

Abstract Partial fuel stratification (PFS) is a promising fuel injection strategy to stabilize lean premixed combustion in spark-ignition (SI) engines. PFS creates a locally stratified mixture by injecting a fraction of the fuel, just before spark timing, into the engine cylinder containing homogeneous lean fuel/air mixture. This locally stratified mixture, when ignited, results in complex flame structure and propagation modes similar to partially premixed flames, and allows for faster and more stable flame propagation than a homogeneous lean mixture. This study focuses on understanding the detailed flame structures associated with PFS-assisted lean premixed combustion. First, a two-dimensional direct numerical simulation (DNS) is performed using detailed fuel chemistry, experimental pressure trace, and realistic initial conditions mapped from a prior engine large-eddy simulation (LES), replicating practical lean SI operating conditions. DNS results suggest that conventional triple flame structures are prevalent during the initial stage of flame kernel growth. Both premixed and non-premixed combustion modes are present with the premixed mode contributing dominantly to the total heat release. Detailed analysis reveals the effects of flame stretch and fuel pyrolysis on the flame displacement speed. Based on the DNS findings, the accuracy of a hybrid G-equation/well-stirred reactor (WSR) combustion model is assessed for PFS-assisted lean operation in the LES context. The G-equation model qualitatively captures the premixed branches of the triple flame, while the WSR model predicts the non-premixed branch of the triple flame. Finally, potential needs for improvements to the hybrid G-equation/WSR modeling approach are discussed.


Sign in / Sign up

Export Citation Format

Share Document