Model Analysis of Syngas Combustion and Emissions for a Micro Gas Turbine

Author(s):  
Chi-Rong Liu ◽  
Hsin-Yi Shih

The purpose of this study is to investigate the combustion and emission characteristics of syngas fuels applied in a micro gas turbine, which is originally designed for a natural gas fired engine. The computation results were conducted by a numerical model, which consists of the three-dimension compressible k–ε model for turbulent flow and PPDF (presumed probability density function) model for combustion process. As the syngas is substituted for methane, the fuel flow rate and the total heat input to the combustor from the methane/syngas blended fuels are varied with syngas compositions and syngas substitution percentages. The computed results presented the syngas substitution effects on the combustion and emission characteristics at different syngas percentages (up to 90%) for three typical syngas compositions and the conditions where syngas applied at fixed fuel flow rate and at fixed heat input were examined. Results showed the flame structures varied with different syngas substitution percentages. The high temperature regions were dense and concentrated on the core of the primary zone for H2-rich syngas, and then shifted to the sides of the combustor when syngas percentages were high. The NOx emissions decreased with increasing syngas percentages, but NOx emissions are higher at higher hydrogen content at the same syngas percentage. The CO2 emissions decreased for 10% syngas substitution, but then increased as syngas percentage increased. Only using H2-rich syngas could produce less carbon dioxide. The detailed flame structures, temperature distributions, and gas emissions of the combustor were presented and compared. The exit temperature distributions and pattern factor (PF) were also discussed. Before syngas fuels are utilized as an alternative fuel for the micro gas turbine, further experimental testing is needed as the modeling results provide a guidance for the improved designs of the combustor.

Author(s):  
Chi-Rong Liu ◽  
Hsin-Yi Shih

The purpose of this study is to investigate the combustion and emission characteristics of syngas fuels applied in a micro gas turbine, which is originally designed for a natural gas fired engine. The computation results were conducted by the commercial CFD software STAR-CD, where the three-dimension compressible k-ε model for turbulent flow and PPDF (Presumed Probability Density Function) model for combustion process were constructed. As the syngas are substituted for methane, the total heat input from the blended fuels and the fuel flow rates are varied with syngas compositions and syngas substitution percentages. The computed results presented the syngas substitution effects on the combustion and emission characteristics at different syngas percentages (up to 80%) for two typical syngas compositions and the conditions where syngas applied at fixed heat input were examined. Results showed the flame structures varied with different syngas substitution percentages. The high temperature regions were dense and concentrated on the core of the primary zone for H2-rich syngas, and then shifted to the sides of the combustor when syngas percentages were high. The NOx emissions decreased with increasing syngas percentages, but NOx emissions are higher at higher hydrogen content for the same syngas percentage. The CO2 emissions also decreased at 10% syngas substitution, but then increased as syngas percentage increased. Only using H2-rich syngas could produce less carbon dioxide. The detailed flame structures, temperature distributions, and gas emissions of the combustor were presented and compared. The exit temperature distributions and pattern factor were also discussed. Before syngas fuels are utilized as an alternative fuel for the micro gas turbine, further experimental testing are needed as the CFD modeling results provide a guidance for the improved designs of the combustor.


Author(s):  
Maaz Ajvad ◽  
Hsin-Yi Shih

Abstract Combustion characteristics of a can combustor with a rotating casing for an innovative micro gas turbine have been modeled. The effects of syngas compositions and the rotating speed on the combustor performance were investigated. The effects of rotation on the combustion performance have been studied previously with methane as the fuel. This work extended the investigation for future application with syngas blended fuels. Two typical compositions of syngas were used namely: H2-rich (H2:CO=80:20, by volume) and equal molar (H2:CO=50:50). The analyses were performed with a computational model, which consists of three-dimension compressible k-ε realizable turbulent flow model and presumed probability density function for combustion process invoking a laminar flamelet assumption generated by detailed chemical kinetics from GRI 3.0. As syngas is substituted for methane at a constant fuel flow rate, the high temperature flame is stabilized along the wall of the combustor liner. With the casing rotating, pattern factor and exit temperature increase, but the lower heating value of syngas causes a power shortage. To make up the power, the fuel flow rate is raised to maintain the thermal load. Consequently, the high temperature flame is pushed downstream due to increased fuel injection velocity. NOx emission decreases as the rotational speed increases in both cases. Pattern factor decreases but exit temperature increases with the increase of roatation speed indicating a higher combustion efficiency. However, there is possible hotspots at exit due to higher pattern factor (PF>0.3) for H2-rich and equal molar syngas at lower speed of rotation, which needs to be resolved by improving the cooling strategy.


Author(s):  
Hun Cha ◽  
Yoo Seok Song ◽  
Kyu Jong Kim ◽  
Jung Rae Kim ◽  
Sung Min KIM

An inappropriate design of HRSG (Heat Recovery Steam Generator) may lead to mechanical problems including the fatigue failure caused by rapid load change such as operating trip, start-up or shut down. The performance of HRSG with dynamic analysis should be investigated in case of start-up or shutdown. In this study, dynamic analysis for the HRSG system was carried out by commercial software. The HRSG system was modeled with HP, IP, LP evaporator, duct burner, superheater, reheater and economizer. The main variables for the analysis were the temperature and mass flow rate from gas turbine and fuel flow rate of duct burner for given start-up (cold/warm/hot) and shutdown curve. The results showed that the exhaust gas condition of gas turbine and fuel flow rate of duct burner were main factors controlling the performance of HRSG such as flow rate and temperature of main steam from final superheater and pressure of HP drum. The time delay at the change of steam temperature between gas turbine exhaust gas and HP steam was within 2 minutes at any analysis cases.


Author(s):  
Marek Dzida ◽  
Zygfryd Domachowski

A gas turbine ship propulsion control system transients have been investigated. On the basis of a mathematical model composed of blocks modelling a two-shaft gas turbine, a gear (mechanical or electric), and a coupling shaft, some preliminary simulations have been carried out. Ship propeller shaft angular velocity, fuel flow rate, and gas turbine combustion chamber outlet temperature response to the ship propeller shaft angular velocity set point, and fuel flow rate, changes have been analyzed. Influences of limiters in the controller action on analyzed transients have been compared.


1975 ◽  
Vol 19 (04) ◽  
pp. 254-265
Author(s):  
Samuel H. Brown ◽  
Reidar Alvestad

This paper describes an analog computer maneuvering simulation of a destroyer study ship. The mathematical model used includes the ship propulsion machinery dynamics and the ship equations of motion. The model couples the ship propulsion dynamics equations with nonlinear maneuvering equations. The power plant representation consists of a simplified mathematical model of a General Electric LM2500 gas turbine engine and is primarily an engine mapping of engine torque versus engine speed using fuel flow. rate as a parameter. The simulation is used to accurately predict slow transients in ship speed during maneuvers resulting from slow increases in the fuel flow rate to the gas turbine. The advantage of the modified model presented in this paper over those not including propulsion dynamics is that it permits simulations of the effects of maneuvering on the propulsion plant.


Author(s):  
Michael T. Timko ◽  
Scott C. Herndon ◽  
Ezra C. Wood ◽  
Timothy B. Onasch ◽  
Megan J. Northway ◽  
...  

The potential human health and environmental impacts of aircraft gas turbine engine emissions during normal airport operation are issues of growing concern. During the JETS/Aircraft Particle Emissions eXperiment(APEX)-2 and APEX-3 field campaigns, we performed an extensive series of gas phase and particulate emissions measurements of on-wing gas turbine engines. In all, nine different CFM56 style engines (including both CFM56-3B1 and -7B22 models) and seven additional engines (two RB211-535E4-B engines, three AE3007 engines, one PW4158, and one CJ6108A) were studied to evaluate engine-to-engine variability. Specific gas-phase measurements include NO2, NO, and total NOx, HCHO, C2H4, CO, and a range of volatile organic compounds (e.g., benzene, styrene, toluene, naphthalene). A number of broad conclusions can be made based on the gas-phase data set: (1) field measurements of gas-phase emission indices (EIs) are generally consistent with ICAO certification values; (2) speciation of gas phase NOx between NO and NO2 is reproducible for different engine types and favors NO2 at low power (and low fuel flow rate) and NO at high power (high fuel flow rate); (3) emission indices of gas-phase organic compounds and CO decrease rapidly with increasing fuel flow rate; (4) plotting EI-CO or volatile organic compound EIs against fuel flow rate collapses much of the variability between the different engines, with one exception (AE3007); (5) HCHO, ethylene, acetaldehyde, and propene are the most abundant volatile organic compounds present in the exhaust gases that we can detect, independent of engine technology differences. Empirical correlations accurate to within 30% and based on the publicly available engine parameters are presented for estimating EI-NOx and EI-NO2. Engine-to-engine variability, unavailability of combustor input conditions, changing ambient temperatures, and complex reaction dynamics limit the accuracy of global correlations for CO or volatile organic compound EIs.


Designs ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 73
Author(s):  
Asep Kadarohman ◽  
Fitri Khoerunnisa ◽  
Syazwana Sapee ◽  
Ratnaningsih Eko Sardjono ◽  
Izuan Izzudin ◽  
...  

A study on the application of oxygenated turpentine oil as a bio-additive in diesel fuel was conducted. The purpose of this research was to investigate the effect of oxygenated turpentine oil additive in diesel fuel on the performance and emission characteristics in diesel engines. Oxygenated turpentine oil is obtained from the oxidation process of turpentine oil. In this experimental study, the influences of oxygenated turpentine oil-diesel blended fuel OT0.2 (0.2% vol oxygenated turpentine oil and 99.8% vol diesel) were compared with pure diesel on engine performance, and emission characteristics were examined in a one-cylinder four-stroke CI engine. The test was performed at two engine loads (25% and 50%) and seven engine speeds (from 1200–2400 rpm with intervals of 200 rpm). The physiochemical characteristics of test fuels were acquired. The engine indicated power, indicated torque, fuel flow rate, and emissions (carbon dioxide, CO2; carbon monoxide, CO; and nitrogen oxide, NOX) were examined. The results revealed that the engine power shows slight increments of 0.7–1.1%, whereas the engine torque slightly decreased with oxygenated turpentine usage compared to pure diesel in most conditions. Furthermore, a reduction in NOX emission decreased by about 0.3–66% with the addition of oxygenated turpentine in diesel compared to diesel. However, usage of OT0.2 decreased fuel flow rate in most speeds at low load but gave a similar value to diesel at 50% load. CO emissions slightly increased with an average of 1.2% compared to diesel while CO2 emissions increased up to 37.5% than diesel. The high-water content, low cetane number, and low heating value of oxygenated turpentine oil were the reasons for the inverse effect found in the engine performances.


1998 ◽  
Vol 120 (3) ◽  
pp. 233-240 ◽  
Author(s):  
V. Radcenco ◽  
J. V. C. Vargas ◽  
A. Bejan

In this paper we show that the thermodynamic performance of a gas turbine power plant can be optimized by adjusting the flow rate and the distribution of pressure losses along the flow path. Specifically, we show that the power output has a maximum with respect to the fuel flow rate or any of the pressure drops. The maximized power output has additional maxima with respect to the overall pressure ratio and overall temperature ratio. When the optimization is performed subject to a fixed fuel flow rate, and the power plant size is constrained, the power output and efficiency can be maximized again by properly allocating the fixed total flow area among the compressor inlet and the turbine outlet.


Author(s):  
Rodney H. Hudson

This paper presents a discussion of the investigation of a gas turbine engine to eliminate pressure oscillations which occurred in the combustor. The basic engine configuration and pertinent aspects of the combustor are described. The pressure oscillations were related to variations in the secondary fuel flow rate through the dual-orifice nozzles. The variations in fuel flow rate caused a fluctuation in nozzle spray characteristics which effected combustion efficiency.


Sign in / Sign up

Export Citation Format

Share Document