Rivaroxaban, a novel oral anticoagulant, attenuates atherosclerotic plaque progression and destabilization in ApoE-deficient mice

2015 ◽  
Vol 242 (2) ◽  
pp. 639-646 ◽  
Author(s):  
Tomoya Hara ◽  
Daiju Fukuda ◽  
Kimie Tanaka ◽  
Yasutomi Higashikuni ◽  
Yoichiro Hirata ◽  
...  
2011 ◽  
Vol 219 (1) ◽  
pp. 65-73 ◽  
Author(s):  
Yun K. Oh ◽  
Adi R. Bachar ◽  
David G. Zacharias ◽  
Sung Gyun Kim ◽  
Junxiang Wan ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Jessica Handke ◽  
Laura Kummer ◽  
Markus A. Weigand ◽  
Jan Larmann

Systemic inflammation associated with major surgery rapidly accelerates atherosclerotic plaque progression in mice. Regulatory T cells (Tregs) have emerged as important modulators of atherogenesis. In coronary artery disease patients, low frequency of Tregs constitutes an independent risk factor for cardiovascular complications after non-cardiac surgery. In this exploratory analysis, we investigate whether preoperative Treg levels affect surgery-induced atherosclerotic lesion destabilization in a murine model of perioperative stress. After 9 weeks of high-cholesterol diet, atherosclerotic apolipoprotein E-deficient mice with modulated Treg levels were subjected to a 30-minute surgical procedure consisting of general isoflurane anesthesia, laparotomy and moderate blood loss. Controls underwent general anesthesia only. Brachiocephalic arteries were harvested 3 days after the intervention for histomorphological analyses of atherosclerotic plaques. Tregs were depleted by a single dose of anti-CD25 monoclonal antibody (mAb) administered 6 days prior to the intervention. Expansion of Tregs was induced by daily injections of IL-2/anti-IL-2 complex (IL-2C) on three consecutive days starting 3 days before surgery. Isotype-matched antibodies and PBS served as controls. Antibody-mediated modulation was Treg-specific. IL-2C treatment resulted in an eight-fold elevation of peripheral CD4+CD25+Foxp3+ Tregs compared to mice administered with anti-CD25 mAb. In mice treated with PBS and anti-CD25 mAb, surgical stress response caused a significant increase of atherosclerotic plaque necrosis (PBS: p < 0.001; anti-CD25 mAb: p = 0.037). Preoperative Treg expansion abrogated perioperative necrotic core formation (p = 0.556) and significantly enhanced postoperative atherosclerotic plaque stability compared to PBS-treated mice (p = 0.036). Postoperative plaque volume (p = 0.960), stenosis (p = 0.693), lesional collagen (p = 0.258), as well as the relative macrophage (p = 0.625) and smooth muscle cell content (p = 0.178) remained largely unaffected by preoperative Treg levels. In atherosclerotic mice, therapeutic expansion of Tregs prior to major surgery mitigates rapid effects on perioperative stress-driven atherosclerotic plaque destabilization. Future studies will show, whether short-term interventions modulating perioperative inflammation qualify for prevention of cardiovascular events associated with major non-cardiac surgery.


2021 ◽  
Vol 22 (11) ◽  
pp. 5718
Author(s):  
Michal Kowara ◽  
Sonia Borodzicz-Jazdzyk ◽  
Karolina Rybak ◽  
Maciej Kubik ◽  
Agnieszka Cudnoch-Jedrzejewska

Myocardial infarction is one of the major causes of mortality worldwide and is a main cause of heart failure. This disease appears as a final point of atherosclerotic plaque progression, destabilization, and rupture. As a consequence of cardiomyocytes death during the infarction, the heart undergoes unfavorable cardiac remodeling, which results in its failure. Therefore, therapies aimed to limit the processes of atherosclerotic plaque progression, cardiac damage during the infarction, and subsequent remodeling are urgently warranted. A hopeful therapeutic option for the future medicine is targeting and regulating non-coding RNA (ncRNA), like microRNA, circular RNA (circRNA), or long non-coding RNA (lncRNA). In this review, the approaches targeted at ncRNAs participating in the aforementioned pathophysiological processes involved in myocardial infarction and their outcomes in preclinical studies have been concisely presented.


2018 ◽  
Vol 5 (3) ◽  
pp. 171447 ◽  
Author(s):  
R. Xing ◽  
A. M. Moerman ◽  
Y. Ridwan ◽  
M. J. Daemen ◽  
A. F. W. van der Steen ◽  
...  

Wall shear stress (WSS) is involved in atherosclerotic plaque initiation, yet its role in plaque progression remains unclear. We aimed to study (i) the temporal and spatial changes in WSS over a growing plaque and (ii) the correlation between WSS and plaque composition, using animal-specific data in an atherosclerotic mouse model. Tapered casts were placed around the right common carotid arteries (RCCA) of ApoE −/− mice. At 5, 7 and 9 weeks after cast placement, RCCA geometry was reconstructed using contrast-enhanced micro-CT. Lumen narrowing was observed in all mice, indicating the progression of a lumen intruding plaque. Next, we determined the flow rate in the RCCA of each mouse using Doppler Ultrasound and computed WSS at all time points. Over time, as the plaque developed and further intruded into the lumen, absolute WSS significantly decreased. Finally at week 9, plaque composition was histologically characterized. The proximal part of the plaque was small and eccentric, exposed to relatively lower WSS. Close to the cast a larger and concentric plaque was present, exposed to relatively higher WSS. Lower WSS was significantly correlated to the accumulation of macrophages in the eccentric plaque. When pooling data of all animals, correlation between WSS and plaque composition was weak and no longer statistically significant. In conclusion, our data showed that in our mouse model absolute WSS strikingly decreased during disease progression, which was significantly correlated to plaque area and macrophage content. Besides, our study demonstrates the necessity to analyse individual animals and plaques when studying correlations between WSS and plaque composition.


Sign in / Sign up

Export Citation Format

Share Document