Polycomb group and trithorax group proteins in Arabidopsis

Author(s):  
Stéphane Pien ◽  
Ueli Grossniklaus
2018 ◽  
Vol 46 (4) ◽  
pp. 957-966 ◽  
Author(s):  
Qiannan Wang ◽  
Wen-Hui Shen

In plant and metazoan, Polycomb Group (PcG) proteins play key roles in regulating developmental processes by repression of gene expression. PcG proteins function as multi-protein complexes; among them the best characterized ones are Polycomb Repressive Complex 1 (PRC1) and PRC2. PRC2 catalyzes histone H3 lysine 27 trimethylation (H3K27me3), and PRC1 can bind H3K27me3 and catalyzes H2A monoubiquitination. While the PRC2 components and molecular functions are evolutionarily conserved, varied PRC1 complexes are found and they show high divergences between animals and plants. In addition to the core subunits, an exponentially increasing number of PRC1-associated factors have been identified in Arabidopsis thaliana. Recent studies have also unraveled cross-component interactions and intertwined roles of PRC1 and PRC2 in chromatin modulation. In addition, complexities of interactions and functions between PcG and Trithorax Group proteins have been observed. This short review summarizes up current knowledge to provide insight about repressive functional mechanism of PRC1 and its interplay with other factors.


Author(s):  
Amit Kumar ◽  
Kirtikumar R Kondhare ◽  
Nilam N Malankar ◽  
Anjan K Banerjee

Abstract Polycomb repressive complex (PRC) group proteins regulate various developmental processes in plants by repressing target genes via H3K27 trimethylation, and they function antagonistically with H3K4 trimethylation mediated by Trithorax group proteins. Tuberization in potato has been widely studied, but the role of histone modifications in this process is unknown. Recently, we showed that overexpression of StMSI1, a PRC2 member, alters the expression of tuberization genes in potato. As MSI1 lacks histone-modification activity, we hypothesized that this altered expression could be caused by another PRC2 member, StE(z)2, a potential H3K27 methyltransferase in potato. Here, we demonstrate that a short-day photoperiod influences StE(z)2 expression in the leaves and stolons. StE(z)2 overexpression alters plant architecture and reduces tuber yield, whereas its knockdown enhances yield. ChIP-sequencing using stolons induced by short-days indicated that several genes related to tuberization and phytohormones, such as StBEL5/11/29, StSWEET11B, StGA2OX1, and StPIN1 carry H3K4me3 or H3K27me3 marks and/or are StE(z)2 targets. Interestingly, we observed that another important tuberization gene, StSP6A, is targeted by StE(z)2 in leaves and that it has increased deposition of H3K27me3 under long-day (non-induced) conditions compared to short days. Overall, our results show that StE(z)2 and deposition of H3K27me3 and/or H3K4me3 marks might regulate the expression of key tuberization genes in potato.


Acta Naturae ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 66-85
Author(s):  
D. A. Chetverina ◽  
D. V. Lomaev ◽  
M. M. Erokhin

Polycomb group (PcG) and Trithorax group (TrxG) proteins are evolutionarily conserved factors responsible for the repression and activation of the transcription of multiple genes in Drosophila and mammals. Disruption of the PcG/TrxG expression is associated with many pathological conditions, including cancer, which makes them suitable targets for diagnosis and therapy in medicine. In this review, we focus on the major PcG and TrxG complexes, the mechanisms of PcG/TrxG action, and their recruitment to chromatin. We discuss the alterations associated with the dysfunction of a number of factors of these groups in oncology and the current strategies used to develop drugs based on small-molecule inhibitors.


2019 ◽  
Author(s):  
Morteza Khabiri ◽  
Peter L. Freddolino

AbstractThe Polycomb-group proteins (PcG) and Trithorax-group proteins (TrxG) are two major epigenetic regulators important for proper differentiation during development (1, 2). In Drosophila melanogaster (D. melanogaster), Polycomb response elements (PREs) are short segments of DNA with a high density of binding sites for transcription factors (TFs) that recruit PcG and TrxG proteins to chromatin. Each PRE has a different number of binding sites for PcG and TrxG, and these binding sites have different topological organizations. It is thus difficult to find general rules to discover the locations of PREs over the entire genome. We have developed a framework to predict the locations and roles of potential PRE regions over the entire D. melanogaster genome using machine learning algorithms. Using a combination of motif-based and simple sequence-based features, we were able to train a random forest (RF) model with very high performance in predicting active PRE regions. This model could distinguish potential PRE regions from non-PRE regions (precision and recall ~0.92 upon cross-validation). In the process, the model suggests that previously unrecognized TFs might contribute to PcG/TrxG recruitment at the PRE locations, as the presence of binding sites for those factors is strongly informative of active PREs. A secondary regression model provides information on features that further differentiate PREs into functional subclasses. Our findings provide both new predictions of 7887 potential PREs in the D. melanogaster genome, and new mechanistic insight into the set of DNA-associated proteins that may contribute to PcG recruitment and/or activity.


Genetics ◽  
1998 ◽  
Vol 149 (1) ◽  
pp. 257-275 ◽  
Author(s):  
Sophie Netter ◽  
Marie-Odile Fauvarque ◽  
Ruth Diez del Corral ◽  
Jean-Maurice Dura ◽  
Dario Coen

AbstractWe used the white gene as an enhancer trap and reporter of chromatin structure. We collected white+ transgene insertions presenting a peculiar pigmentation pattern in the eye: white expression is restricted to the dorsal half of the eye, with a clear-cut dorsal/ventral (D/V) border. This D/V pattern is stable and heritable, indicating that phenotypic expression of the white reporter reflects positional information in the developing eye. Localization of these transgenes led us to identify a unique genomic region encompassing 140 kb in 69D1–3 subject to this D/V effect. This region contains at least three closely related homeobox-containing genes that are constituents of the iroquois complex (IRO-C). IRO-C genes are coordinately regulated and implicated in similar developmental processes. Expression of these genes in the eye is regulated by the products of the Polycomb -group (Pc-G) and trithorax-group (trx-G) genes but is not modified by classical modifiers of position-effect variegation. Our results, together with the report of a Pc -G binding site in 69D, suggest that we have identified a novel cluster of target genes for the Pc-G and trx-G products. We thus propose that ventral silencing of the whole IRO-C in the eye occurs at the level of chromatin structure in a manner similar to that of the homeotic gene complexes, perhaps by local compaction of the region into a heterochromatin-like structure involving the Pc-G products.


2003 ◽  
Vol 23 (1) ◽  
pp. 140-149 ◽  
Author(s):  
Young-Hwa Goo ◽  
Young Chang Sohn ◽  
Dae-Hwan Kim ◽  
Seung-Whan Kim ◽  
Min-Jung Kang ◽  
...  

ABSTRACT Many transcription coactivators interact with nuclear receptors in a ligand- and C-terminal transactivation function (AF2)-dependent manner. These include activating signal cointegrator 2 (ASC-2), a recently isolated transcriptional coactivator molecule, which is amplified in human cancers and stimulates transactivation by nuclear receptors and numerous other transcription factors. In this report, we show that ASC-2 belongs to a steady-state complex of approximately 2 MDa (ASC-2 complex [ASCOM]) in HeLa nuclei. ASCOM contains retinoblastoma-binding protein RBQ-3, α/β-tubulins, and trithorax group proteins ALR-1, ALR-2, HALR, and ASH2. In particular, ALR-1/2 and HALR contain a highly conserved 130- to 140-amino-acid motif termed the SET domain, which was recently implicated in histone H3 lysine-specific methylation activities. Indeed, recombinant ALR-1, HALR, and immunopurified ASCOM exhibit very weak but specific H3-lysine 4 methylation activities in vitro, and transactivation by retinoic acid receptor appears to involve ligand-dependent recruitment of ASCOM and subsequent transient H3-lysine 4 methylation of the promoter region in vivo. Thus, ASCOM may represent a distinct coactivator complex of nuclear receptors. Further characterization of ASCOM will lead to a better understanding of how nuclear receptors and other transcription factors mediate transcriptional activation.


1993 ◽  
Vol 13 (10) ◽  
pp. 6357-6366
Author(s):  
R S Jones ◽  
W M Gelbart

As is typical of Polycomb-group loci, the Enhancer of zeste [E(z)] gene negatively regulates the segment identity genes of the Antennapedia (ANT-C) and Bithorax (BX-C) gene complexes. A second class of loci, collectively known as the trithorax group, plays an antagonistic role as positive regulators of the ANT-C and BX-C genes. Molecular analysis of the E(z) gene predicts a 760-amino-acid protein product. A region of 116 amino acids near the E(z) carboxy terminus is 41.2% identical (68.4% similar) with a carboxy-terminal region of the trithorax protein. This portion of the trithorax protein is part of a larger region previously shown to share extensive homology with a human protein (ALL-1/Hrx) that is implicated in acute leukemias. Over this same 116 amino acids, E(z) and ALL-1/Hrx are 43.9% identical (68.4% similar). Otherwise, E(z) is not significantly similar to any previously described proteins. As this region of sequence similarity is shared by two proteins with antagonistic functions, we suggest that it may comprise a domain that interacts with a common target, either nucleic acid or protein. Opposite effects on transcription might then be determined by other portions of the two proteins.


Sign in / Sign up

Export Citation Format

Share Document