scholarly journals Leukemia Cell Surface Antigen Modulation Induced By Dual CD19/CD20 Chimeric Antigen Receptor (CAR)-T Cells

2017 ◽  
Vol 23 (3) ◽  
pp. S250-S251 ◽  
Author(s):  
Dina Schneider ◽  
Ying Xiong ◽  
Darong Wu ◽  
Volker Nolle ◽  
Sarah Schmitz ◽  
...  
2021 ◽  
Author(s):  
Wenyue Cao ◽  
Zhi Geng ◽  
Na Wang ◽  
Quan Pan ◽  
Shaodong Guo ◽  
...  

As a revolutionary cancer treatment, the chimeric antigen receptor (CAR) T cell therapy suffers from complications such as cytokine release syndromes and T cell exhaustion. Their mitigation desires controllable activation of CAR-T cells that is achievable through regulatory display of CARs on the T cell surface. By embedding the hepatitis C virus NS3 protease (HCV-NS3) in an anti-CD19 CAR between the anti-CD19 single-chain variable fragment (scFv) and the hinge domain, we showed that the display of anti-CD19 scFv on CAR-T cells was positively correlated to the presence of a clinical HCV-NS3 inhibitor asunaprevir (ASV). This novel CAR design that allows the display of anti-CD19 scFv on the T cell surface in the presence of ASV and its removal in the absence of ASV effectuates a practically recurring chemical switch for CAR-T cells. We demonstrated that the intact CAR on T cells was repeatedly turn on and off by controlling the presence of ASV. The dose dependent manner of the intact CAR display on T cells with regard to the ASV concentration enables delicate modulation of CAR-T cell activation during cancer treatment. In a mouse model, we showed different treatment prospects when ASV was provided at different doses to mice that were infused with both human CD19+ lymphoma and the switchable CAR-T cells.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A124-A124
Author(s):  
Letizia Giardino ◽  
Ryan Gilbreth ◽  
Cui Chen ◽  
Erin Sult ◽  
Noel Monks ◽  
...  

BackgroundChimeric antigen receptor (CAR)-T therapy has yielded impressive clinical results in hematological malignancies and it is a promising approach for solid tumor treatment. However, toxicity, including on-target off-tumor antigen binding, is a concern hampering its broader use.MethodsIn selecting a lead CAR-T candidate against the oncofetal antigen glypican 3 (GPC3), we compared CAR bearing a low and high affinity single-chain variable fragment (scFv,) binding to the same epitope and cross-reactive with murine GPC3. We characterized low and high affinity CAR-T cells immunophenotype and effector function in vitro, followed by in vivo efficacy and safety studies in hepatocellular carcinoma (HCC) xenograft models.ResultsCompared to the high-affinity construct, the low-affinity CAR maintained cytotoxic function but did not show in vivo toxicity. High-affinity CAR-induced toxicity was caused by on-target off-tumor binding, based on the evidence that high-affinity but not low-affinity CAR, were toxic in non-tumor bearing mice and accumulated in organs with low expression of GPC3. To add another layer of safety, we developed a mean to target and eliminate CAR-T cells using anti-TNFα antibody therapy post-CAR-T infusion. This antibody functioned by eliminating early antigen-activated CAR-T cells, but not all CAR-T cells, allowing a margin where the toxic response could be effectively decoupled from anti-tumor efficacy.ConclusionsSelecting a domain with higher off-rate improved the quality of the CAR-T cells by maintaining cytotoxic function while reducing cytokine production and activation upon antigen engagement. By exploring additional traits of the CAR-T cells post-activation, we further identified a mechanism whereby we could use approved therapeutics and apply them as an exogenous kill switch that would eliminate early activated CAR-T following antigen engagement in vivo. By combining the reduced affinity CAR with this exogenous control mechanism, we provide evidence that we can modulate and control CAR-mediated toxicity.Ethics ApprovalAll animal experiments were conducted in a facility accredited by the Association for Assessment of Laboratory Animal Care (AALAC) under Institutional Animal Care and Use Committee (IACUC) guidelines and appropriate animal research approval.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ke-Tao Jin ◽  
Bo Chen ◽  
Yu-Yao Liu ◽  
H uan-Rong Lan ◽  
Jie-Ping Yan

AbstractColorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer deaths worldwide. Besides common therapeutic approaches, such as surgery, chemotherapy, and radiotherapy, novel therapeutic approaches, including immunotherapy, have been an advent in CRC treatment. The immunotherapy approaches try to elicit patients` immune responses against tumor cells to eradicate the tumor. Monoclonal antibodies (mAbs) and chimeric antigen receptor (CAR) T cells are two branches of cancer immunotherapy. MAbs demonstrate the great ability to completely recognize cancer cell-surface receptors and blockade proliferative or inhibitory pathways. On the other hand, T cell activation by genetically engineered CAR receptor via the TCR/CD3 and costimulatory domains can induce potent immune responses against specific tumor-associated antigens (TAAs). Both of these approaches have beneficial anti-tumor effects on CRC. Herein, we review the different mAbs against various pathways and their applications in clinical trials, the different types of CAR-T cells, various specific CAR-T cells against TAAs, and their clinical use in CRC treatment.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2534-2534
Author(s):  
Matthew H. Carabasi ◽  
Meredith McKean ◽  
Mark N. Stein ◽  
Michael Thomas Schweizer ◽  
Jason J. Luke ◽  
...  

2534 Background: CART-PSMA-TGFβRDN cells are autologous T cells engineered via lentiviral transduction to express a dominant negative form of TGFβRII (TGFβRDN) and a chimeric antigen receptor (CAR) with specificity to prostate specific membrane antigen (PSMA). The TGFβRDN renders CAR T cells resistant to TGFβ-mediated immunosuppression. CART-PSMA-02 is a multi-center, open-label, Phase 1 study evaluating the safety and feasibility of dosing patients with metastatic castration resistant prostate cancer (mCRPC) with CART-PSMA-TGFβRDN (NCT04227275). Methods: This is a 3+3 dose escalation study to determine the recommended phase 2 dose and schedule of CART-PSMA-TGFβRDN cells following lymphodepleting chemotherapy with cyclophosphamide and fludarabine. Single and fractionated doses are being evaluated. A cohort expansion will enroll patients to further explore the safety of the selected dose and schedule. Results: As of January 2021, 6 patients (pts) have been treated. Two pts were treated in the first dose level (1-3 x107 transduced T cells (TDN)). Four pts were treated in the second dose level (1-3 x 108 TDN with fractionated dosing). AEs occurring in ≥50 % of pts included cytokine release syndrome (CRS), anemia, thrombocytopenia, increased creatinine, nausea, fatigue, pyrexia and dehydration. No DLTs occurred in the 1st dose level. Four pts in the 2nd dose level developed CRS (3 Gr 1 and 1 Gr 2). One pt developed rapid G2 CRS that progressed to Gr 5 encephalopathy and Gr 5 multi-organ failure. Ferritin levels peaked at 56,974 ng/ml (baseline 2,903 ng/mL) despite aggressive immunosuppressive therapy including tocilizumab, dexamtheasone and anakinra. The post infusion cytokine profile indicated elevations in IL-1RA, TNF-alpha, VEGF, IL-10, MIP-1b, IFN-gamma, GM-CSF and notably lower levels of IL6 compared to published reports of CD19 CART-mediated CRS. Autopsy findings were consistent with HLH/MAS, confirming overactivity of the monocyte/macrophage compartment. Based on these observations, a modified immune toxicity management strategy that includes prophylactic anakinra (an IL1R antagonist) was instituted. Preliminary evidence of clinical activity of CART-PSMA-TGFβRDN was noted in the 2nd dose level. Two of 3 pts with 1 month follow-up demonstrated PSA decreases from baseline (1 with >95% decrease, 1 with >50% decrease). Both pts had stable disease per RECIST v1.1. A third pt with only 1 week follow-up had a 40% PSA decrease. Additional data analyses from all infused patients are ongoing and data from pts managed with modified immune toxicity management will be presented. Conclusions: Initial data indicates a unique immune toxicity profile and the potential for anti-tumor activity in mCRPC pts treated with CART-PSMA-TGFβRDN. Modified immune toxicity management could lead to identification of a manageable safety profile and therapeutically active dose. Clinical trial information: NCT04227275.


2017 ◽  
Vol 17 ◽  
pp. S381-S382
Author(s):  
Sabarinath Venniyil Radhakrishnan ◽  
Adam Miles ◽  
Djordje Atanackovic ◽  
Tim Luetkens

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248973
Author(s):  
Nami Iwamoto ◽  
Bhavik Patel ◽  
Kaimei Song ◽  
Rosemarie Mason ◽  
Sara Bolivar-Wagers ◽  
...  

Achieving a functional cure is an important goal in the development of HIV therapy. Eliciting HIV-specific cellular immune responses has not been sufficient to achieve durable removal of HIV-infected cells due to the restriction on effective immune responses by mutation and establishment of latent reservoirs. Chimeric antigen receptor (CAR) T cells are an avenue to potentially develop more potent redirected cellular responses against infected T cells. We developed and tested a range of HIV- and SIV-specific chimeric antigen receptor (CAR) T cell reagents based on Env-binding proteins. In general, SHIV/SIV CAR T cells showed potent viral suppression in vitro, and adding additional CAR molecules in the same transduction resulted in more potent viral suppression than single CAR transduction. Importantly, the primary determinant of virus suppression potency by CAR was the accessibility to the Env epitope, and not the neutralization potency of the binding moiety. However, upon transduction of autologous T cells followed by infusion in vivo, none of these CAR T cells impacted either acquisition as a test of prevention, or viremia as a test of treatment. Our study illustrates limitations of the CAR T cells as possible antiviral therapeutics.


Sign in / Sign up

Export Citation Format

Share Document