Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL

2004 ◽  
Vol 315 (2) ◽  
pp. 264-271 ◽  
Author(s):  
Hiroyuki Motoshima ◽  
Xiangdong Wu ◽  
Kalyankar Mahadev ◽  
Barry J Goldstein
2008 ◽  
Vol 28 (01/02) ◽  
pp. 85-88 ◽  
Author(s):  
D. Fuchs ◽  
H. Daniel ◽  
U. Wenzel

SummaryEpidemiological studies indicate that the consumption of soy-containing food may prevent or slow-down the development of cardiovascular disease. In endothelial cells application of a soy extract or a combination of the most abundant soy isoflavones genistein and daidzein both inhibited apoptosis, a driving force in atherosclerosis development, when applied in combination with oxidized LDL or homocysteine. Proteome analysis revealed that the stressorinduced alteration of protein expression profile was reversed by the soy extract or the genistein/daidzein mixture. Only few protein entities that could be functionally linked to mitochondrial dysfunction were regulated in common by both application forms of isoflavones. A dietary intervention with isoflavone-enriched soy extract in postmenopausal women, who generally show strongly increased cardiovascular risk due to diminished estrogen production, led to significant alterations in the steady state levels of proteins from mononuclear blood cells. The proteins identified by proteome analysis revealed that soy isoflavones may increase the anti-inflammatory response in blood mononuclear cells thereby contributing to the atherosclerosispreventive activities of a soy-rich diet. Conclusion: By proteome analysis protein targets were identified in vitro in endothelial cells that respond to soy isoflavones and that may decipher molecular mechanisms through which soy products exert their protective effects in the vasculature.


2001 ◽  
Vol 59 (s78) ◽  
pp. 120-123 ◽  
Author(s):  
Jan Galle ◽  
Alexandra Heinloth ◽  
Christoph Wanner ◽  
Kathrin Heermeier

2008 ◽  
Vol 9 (1) ◽  
pp. 54
Author(s):  
E. Kellokoski ◽  
A. Kunnari ◽  
M. Jokela ◽  
Y. Kesaniemi ◽  
S. Horkko

2003 ◽  
Vol 285 (6) ◽  
pp. H2298-H2308 ◽  
Author(s):  
Erin K. Ceaser ◽  
Anup Ramachandran ◽  
Anna-Liisa Levonen ◽  
Victor M. Darley-Usmar

Oxidized lipids are capable of initiating diverse cellular responses through both receptor-mediated mechanisms and direct posttranslational modification of proteins. Typically, exposure of cells to low concentrations of oxidized lipids induces cytoprotective pathways, whereas high concentrations result in apoptosis. Interestingly, mitochondria can contribute to processes that result in either cytoprotection or cell death. The role of antioxidant defenses such as glutathione in adaptation to stress has been established, but the potential interaction with mitochondrial function is unknown and is examined in this article. Human umbilical vein endothelial cells (HUVEC) were exposed to oxidized LDL (oxLDL) or the electrophilic cyclopentenone 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2). We demonstrate that complex I activity, but not citrate synthase or cytochrome- c oxidase, is significantly induced by oxLDL and 15d-PGJ2. The mechanism is not clear at present but is independent of the induction of GSH, peroxisome proliferator-activated receptor (PPAR)-γ, and PPAR-α. This response is dependent on the induction of oxidative stress in the cells because it can be prevented by nitric oxide, probucol, and the SOD mimetic manganese(III) tetrakis(4-benzoic acid) porphyrin chloride. This increased complex I activity appears to contribute to protection against apoptosis induced by 4-hydroxynonenal.


FEBS Letters ◽  
1992 ◽  
Vol 299 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Anne Nègre-Salvayre ◽  
Guylène Fitoussi ◽  
Valérie Réaud ◽  
Marie-Thérèse Pieraggi ◽  
Jean-Claude Thiers ◽  
...  

2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Alexander Akhmedov ◽  
Remo D Spescha ◽  
Francesco Paneni ◽  
Giovani G Camici ◽  
Thomas F Luescher

Background— Stroke is one of the most common causes of death and long term disability worldwide primarily affecting the elderly population. Lectin-like oxidized LDL receptor 1 (LOX-1) is the receptor for oxidized LDL identified in endothelial cells. Binding of OxLDL to LOX-1 induces several cellular events in endothelial cells, such as activation of transcription factor NF-kB, upregulation of MCP-1, and reduction in intracellular NO. Accumulating evidence suggests that LOX-1 is involved in endothelial dysfunction, inflammation, atherogenesis, myocardial infarction, and intimal thickening after balloon catheter injury. Interestingly, a recent study demonstrated that acetylsalicylic acid (aspirin), which could prevent ischemic stroke, inhibited Ox-LDL-mediated LOX-1 expression in human coronary endothelial cells. The expression of LOX-1 was increased at a transient ischemic core site in the rat middle cerebral artery occlusion model. These data suggest that LOX-1 expression induces atherosclerosis in the brain and is the precipitating cause of ischemic stroke. Therefore, the goal of the present study was to investigate the role of endothelial LOX-1 in stroke using experimental mouse model. Methods and Results— 12-week-old male LOX-1TG generated recently in our group and wild-type (WT) mice were applied for a transient middle cerebral artery occlusion (MCAO) model to induce ischemia/reperfusion (I/R) brain injury. LOX-1TG mice developed 24h post-MCAO significantly larger infarcts in the brain compared to WT (81.51±8.84 vs. 46.41±10.13, n=7, p < 0.05) as assessed morphologically using Triphenyltetrazolium chloride (TTC) staining. Moreover, LOX-1TG showed higher neurological deficit in RotaRod (35.57±8.92 vs. 66.14±10.63, n=7, p < 0.05) and Bederson tests (2.22±0.14 vs. 1.25±0.30, n=9-12, p < 0.05) - two experimental physiological tests for neurological function. Conclusions— Thus, our data suggest that LOX-1 plays a critical role in the ischemic stroke when expressed at unphysiological levels. Such LOX-1 -associated phenotype could be due to the endothelial dysfunction. Therefore, LOX-1 may represent novel therapeutic targets for preventing ischemic stroke.


2005 ◽  
Vol 59 (11) ◽  
pp. 1282-1290 ◽  
Author(s):  
L Seppo ◽  
T Lähteenmäki ◽  
M J Tikkanen ◽  
H Vanhanen ◽  
R Korpela ◽  
...  

2010 ◽  
Vol 299 (3) ◽  
pp. H605-H612 ◽  
Author(s):  
Xiuping Chen ◽  
Hanrui Zhang ◽  
Steve McAfee ◽  
Cuihua Zhang

We hypothesized that the reciprocal association between adiponectin and lectin-like oxidized LDL (ox-LDL) receptor (LOX)-1 contributes to the regulation of aortic endothelial dysfunction in atherosclerosis. To test this hypothesis, endothelium-dependent (ACh) and endothelium-independent (sodium nitroprusside) vasorelaxation of isolated aortic rings from control mice, apolipoprotein E (ApoE) knockout (KO) mice, and ApoE KO mice treated with either adiponectin (15 μg·day−1·mouse−1 sc for 8 days) or neutralizing antibody to LOX-1 (anti-LOX-1, 16 μg/ml, 0.1 ml/mouse ip for 7 days) were examined. Although vasorelaxation to sodium nitroprusside was not different between control and ApoE KO mice, relaxation to ACh was impaired in ApoE KO mice. Adiponectin and anti-LOX-1 restored nitric oxide-mediated endothelium-dependent vasorelaxation in ApoE KO mice. Aortic ROS formation and ox-LDL uptake were increased in ApoE KO mice. Both adiponectin and anti-LOX-1 treatment reduced ROS production and aortic ox-LDL uptake. In mouse coronary artery endothelial cells, TNF-α incubation increased endothelial LOX-1 expression. Adiponectin reduced TNF-α-induced LOX-1 expression. Consistently, in ApoE KO mice, adiponectin treatment reversed elevated LOX-1 expression in aortas. Immunofluorescence staining showed that adiponectin was mainly colocalized with endothelial cells. Although adiponectin expression was lower in ApoE KO versus control mice, anti-LOX-1 increased aortic adiponectin expression, suggesting a reciprocal regulation between adiponectin and LOX-1. Moreover, both adiponectin and anti-LOX-1 reduced NF-κB expression in ApoE KO mice. Thus, adiponectin and LOX-1 may converge on NF-κB signaling to regulate their function. In conclusion, our results indicate that the reciprocal regulation between adiponectin and LOX-1 amplifies oxidative stress and ox-LDL uptake, leading to endothelial dysfunction in atherosclerosis.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Anabel García-Heredia ◽  
Judit Marsillach ◽  
Anna Rull ◽  
Iris Triguero ◽  
Isabel Fort ◽  
...  

We studied the influence of PON1 on metabolic alterations induced by oxidized LDL when incubated with endothelial cells. HUVEC cells were incubated with native LDL, oxidized LDL, oxidized LDL plus HDL from wild type mice, and oxidized LDL plus HDL from PON1-deficient mice. Results showed alterations in carbohydrate and phospholipid metabolism and increased apoptosis in cells incubated with oxidized LDL. These changes were partially prevented by wild type mouse HDL, but the effects were less effective with HDL from PON1-deficient mice. Our results suggest that PON1 may play a significant role in endothelial cell survival by protecting cells from alterations in the respiratory chain induced by oxidized LDL. These results extend current knowledge on the protective role of HDL and PON1 against oxidation and apoptosis in endothelial cells.


Sign in / Sign up

Export Citation Format

Share Document