Structural investigations on native collagen type I fibrils using AFM

2007 ◽  
Vol 354 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Stefan Strasser ◽  
Albert Zink ◽  
Marek Janko ◽  
Wolfgang M. Heckl ◽  
Stefan Thalhammer
1979 ◽  
Author(s):  
H. Hörmann ◽  
F. Jilek

Affinity between collagen and cold-insoluble globulin was measured by complexing soluble 125-J labelled collagen preparations with the globulin. Precipitates containing considerable activity were formed at 4°C and 22°C by denatured soluble collagen, type I and type III, but only little by native soluble collagen. The precipitation of native collagen, type III, by cold-insoluble globulin was enhanced by heparin. Under optimal conditions at a weight ratio or heparin and cold-insoluble globulin of about 1:1 up to 60% of the collagen applied was insolubilized. Native collagen, type I, was complexed far less effectively even in presence of heparin. Electronmicroscopic and precipitation experiments using 125-J labelled cold-insoluble globulin indicated that heparin might induce a partial conversion of cold-insoluble globulin to a fibrillar derivative which exhibited improved binding properties for the rod-like native collagen molecules. – Supported by Deutsche Forschungsgemeinschaft, Project Ho 740/1.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2642
Author(s):  
Ruth Naomi ◽  
Pauzi Muhd Ridzuan ◽  
Hasnah Bahari

Collagen type I (Col-I) is unique due to its high biocompatibility in human tissue. Despite its availability from various sources, Col-I naturally mimics the extracellular matrix (ECM) and generally makes up the larger protein component (90%) in vasculature, skin, tendon bone, and other tissue. The acceptable physicochemical properties of native Col-I further enhance the incorporation of Col-I in various fields, including pharmaceutical, cosmeceutical, regenerative medicine, and clinical. This review aims to discuss Col-I, covering the structure, various sources of availability, native collagen synthesis, current extraction methods, physicochemical characteristics, applications in various fields, and biomarkers. The review is intended to provide specific information on Col-I currently available, going back five years. This is expected to provide a helping hand for researchers who are concerned about any development on collagen-based products particularly for therapeutic fields.


1991 ◽  
Vol 274 (2) ◽  
pp. 615-617 ◽  
Author(s):  
P Kern ◽  
M Menasche ◽  
L Robert

The biosynthesis of type I, type V and type VI collagens was studied by incubation of calf corneas in vitro with [3H]proline as a marker. Pepsin-solubilized collagen types were isolated by salt fractionation and quantified by SDS/PAGE. Expressed as proportions of the total hydroxyproline solubilized, corneal stroma comprised 75% type I, 8% type V and 17% type VI collagen. The rates of [3H]proline incorporation, linear up to 24 h for each collagen type, were highest for type VI collagen and lowest for type I collagen. From pulse-chase experiments, the calculated apparent half-lives for types I, V and VI collagens were 36 h, 10 h and 6 h respectively.


2021 ◽  
Vol 22 (8) ◽  
pp. 4066
Author(s):  
Patrizia Marchese ◽  
Maria Lombardi ◽  
Maria Elena Mantione ◽  
Domenico Baccellieri ◽  
David Ferrara ◽  
...  

Atherothrombosis exposes vascular components to blood. Currently, new antithrombotic therapies are emerging. Herein we investigated thrombogenesis of human arteries with/without atherosclerosis, and the interaction of coagulation and vascular components, we and explored the anti-thrombogenic efficacy of blockade of the P2X purinoceptor 7 (P2X7). A confocal blood flow videomicroscopy system was performed on cryosections of internal mammary artery (IMA) or carotid plaque (CPL) determining/localizing platelets and fibrin. Blood from healthy donors elicited thrombi over arterial layers. Confocal microscopy associated thrombus with tissue presence of collagen type I, laminin, fibrin(ogen) and tissue factor (TF). The addition of antibodies blocking TF (aTF) or factor XI (aFXI) to blood significantly reduced fibrin deposition, variable platelet aggregation and aTF + aFXI almost abolished thrombus formation, showing synergy between coagulation pathways. A scarce effect of aTF over sub-endothelial regions, more abundant in tissue TF and bundles of laminin and collagen type I than deep intima, may suggest tissue thrombogenicity as molecular structure-related. Consistently with TF-related vascular function and expression of P2X7, the sections from CPL but not IMA tissue cultures pre-treated with the P2X7 antagonist A740003 demonstrated poor thrombogenesis in flow experiments. These data hint to local targeting studies on P2X7 modulation for atherothrombosis prevention/therapy.


Sign in / Sign up

Export Citation Format

Share Document