Peroxisome proliferator-activated receptor α agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

2008 ◽  
Vol 368 (4) ◽  
pp. 865-870 ◽  
Author(s):  
Xiang Chen ◽  
Ming Li ◽  
Weiping Sun ◽  
Yan Bi ◽  
Mengyin Cai ◽  
...  
2015 ◽  
Author(s):  
Narjes Nasiri Ansari ◽  
Eliana Spilioti ◽  
Vasiliki Kalotychou ◽  
Geena Dalagiorgou ◽  
Paraskevi Moutsatsou ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Chia Ju Chang ◽  
Thing-Fong Tzeng ◽  
Shorong-Shii Liou ◽  
Yuan-Shiun Chang ◽  
I-Min Liu

The aim of this study was to investigate the antiobesity and antihyperlipidaemic effects of myricetin. Myricetin exhibited a significant concentration-dependent decrease in the intracellular accumulation of triglyceride in 3T3-L1 adipocytes. The high-fat diet (HFD)-fed rats were dosed orally with myricetin or fenofibrate, once daily for eight weeks. Myricetin (300 mg kg−1per day) displayed similar characteristics to fenofibrate (100 mg kg−1per day) in reducing lowered body weight (BW) gain, visceral fat-pad weights and plasma lipid levels of HFD-fed rats. Myricetin also reduced the hepatic triglyceride and cholesterol contents, as well as lowered hepatic lipid droplets accumulation and epididymal adipocyte size in HFD-fed rats. Myricetin and fenofibrate reversed the HFD-induced down-regulation of the hepatic peroxisome proliferator activated receptor (PPAR)α. HFD-induced decreases of the hepatic protein level of acyl-CoA oxidase and cytochrome P450 isoform 4A1 were up-regulated by myricetin and fenofibrate. The elevated expressions of hepatic sterol regulatory element binding proteins (SREBPs) of HFD-fed rats were lowered by myricetin and fenofibrate. These results suggest that myricetin suppressed BW gain and body fat accumulation by increasing the fatty acid oxidation, which was likely mediated via up-regulation of PPARαand down-regulation of SREBP expressions in the liver of HFD-fed rats.


2001 ◽  
Vol 354 (1) ◽  
pp. 225-232 ◽  
Author(s):  
Delphine HOURTON ◽  
Philippe DELERIVE ◽  
Jana STANKOVA ◽  
Bart STAELS ◽  
M. John CHAPMAN ◽  
...  

Regulation of the expression of platelet-activating factor (PAF) receptor by atherogenic lipoproteins might contribute to atherogenesis. We show that progressive oxidation of low-density lipoprotein (LDL) gradually inhibits PAF receptor expression on the macrophage cell surface. We tested the effect of oxidized LDL (oxLDL) on PAF receptor expression in human monocytes that do not contain peroxisome-proliferator-activated receptor γ (PPARγ), a nuclear receptor activated by oxLDL. OxLDL decreased by 50% (P ⩽0.001) and by 29% (P⩽0.05) the binding of PAF and the expression of PAF receptor mRNA respectively. Next we demonstrated that progressive oxidation of LDLs significantly activated PPARα-dependent transcription in transfected mouse aortic endothelial cells. Finally we demonstrated, in mature macrophages, that fenofibrate (20µM), a specific PPARα agonist, but not the specific PPARγ agonist BRL49653 (20nM), significantly decreased both PAF binding and PAF receptor mRNA expression, by 65% and 40% (P⩽0.001) respectively. Additionally, another PPARα agonist, Wy14,643, decreased PAF receptor promoter activity by 70% (P⩽0.05) in transfected THP-1 cells, suggesting the involvement of the proximal promoter region (-980 to -500) containing a series of four nuclear factor (NF)-κB motifs. Thus PPARα might be involved in the down-regulation of PAF receptor gene expression by oxLDLs in human monocytes/macrophages. The oxidation of one or more lipid components of LDLs might result in the formation of natural activators of PPARα. It is hypothesized that such activators might modulate inflammation and apoptosis upon atherogenesis by decreasing the expression of PAF receptor.


2010 ◽  
Vol 31 (4) ◽  
pp. 626-638 ◽  
Author(s):  
E. K. Lee ◽  
M. J. Lee ◽  
K. Abdelmohsen ◽  
W. Kim ◽  
M. M. Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document