scholarly journals miR-130 Suppresses Adipogenesis by Inhibiting Peroxisome Proliferator-Activated Receptor   Expression

2010 ◽  
Vol 31 (4) ◽  
pp. 626-638 ◽  
Author(s):  
E. K. Lee ◽  
M. J. Lee ◽  
K. Abdelmohsen ◽  
W. Kim ◽  
M. M. Kim ◽  
...  
2001 ◽  
Vol 354 (1) ◽  
pp. 225-232 ◽  
Author(s):  
Delphine HOURTON ◽  
Philippe DELERIVE ◽  
Jana STANKOVA ◽  
Bart STAELS ◽  
M. John CHAPMAN ◽  
...  

Regulation of the expression of platelet-activating factor (PAF) receptor by atherogenic lipoproteins might contribute to atherogenesis. We show that progressive oxidation of low-density lipoprotein (LDL) gradually inhibits PAF receptor expression on the macrophage cell surface. We tested the effect of oxidized LDL (oxLDL) on PAF receptor expression in human monocytes that do not contain peroxisome-proliferator-activated receptor γ (PPARγ), a nuclear receptor activated by oxLDL. OxLDL decreased by 50% (P ⩽0.001) and by 29% (P⩽0.05) the binding of PAF and the expression of PAF receptor mRNA respectively. Next we demonstrated that progressive oxidation of LDLs significantly activated PPARα-dependent transcription in transfected mouse aortic endothelial cells. Finally we demonstrated, in mature macrophages, that fenofibrate (20µM), a specific PPARα agonist, but not the specific PPARγ agonist BRL49653 (20nM), significantly decreased both PAF binding and PAF receptor mRNA expression, by 65% and 40% (P⩽0.001) respectively. Additionally, another PPARα agonist, Wy14,643, decreased PAF receptor promoter activity by 70% (P⩽0.05) in transfected THP-1 cells, suggesting the involvement of the proximal promoter region (-980 to -500) containing a series of four nuclear factor (NF)-κB motifs. Thus PPARα might be involved in the down-regulation of PAF receptor gene expression by oxLDLs in human monocytes/macrophages. The oxidation of one or more lipid components of LDLs might result in the formation of natural activators of PPARα. It is hypothesized that such activators might modulate inflammation and apoptosis upon atherogenesis by decreasing the expression of PAF receptor.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Heidi N. Bagley ◽  
Yan Wang ◽  
Michael S. Campbell ◽  
Xing Yu ◽  
Robert H. Lane ◽  
...  

Intrauterine growth restriction (IUGR) predisposes to obesity and adipose dysfunction. We previously demonstrated IUGR-induced increased visceral adipose deposition and dysregulated expression of peroxisome proliferator activated receptor-γ2 (PPARγ2) in male adolescent rats, prior to the onset of obesity. In other studies, activation of PPARγincreases subcutaneous adiponectin expression and normalizes visceral adipose deposition. We hypothesized that maternal supplementation with docosahexaenoic acid (DHA), a PPARγagonist, would normalize IUGR adipose deposition in association with increased PPARγ, adiponectin, and adiponectin receptor expression in subcutaneous adipose. To test these hypotheses, we used a well-characterized model of uteroplacental-insufficiency-(UPI-) induced IUGR in the rat with maternal DHA supplementation. Our primary findings were that maternal DHA supplementation during rat pregnancy and lactation (1) normalizes IUGR-induced changes in adipose deposition and visceral PPARγexpression in male rats and (2) increases serum adiponectin, as well as adipose expression of adiponectin and adiponectin receptors in former IUGR rats. Our novel findings suggest that maternal DHA supplementation may normalize adipose dysfunction and promote adiponectin-induced improvements in metabolic function in IUGR.


PPAR Research ◽  
2007 ◽  
Vol 2007 ◽  
pp. 1-8 ◽  
Author(s):  
David M. Aronoff ◽  
Carlos H. Serezani ◽  
Jennifer K. Carstens ◽  
Teresa Marshall ◽  
Srinivasa R. Gangireddy ◽  
...  

Alveolar macrophages abundantly express PPAR-γ, with both natural and synthetic agonists maintaining the cell in a quiescent state hyporesponsive to antigen stimulation. Conversely, agonists upregulate expression and function of the cell-surface receptor CD36, which mediates phagocytosis of lipids, apoptotic neutrophils, and other unopsonized materials. These effects led us to investigate the actions of PPAR-γagonists on the Fcγreceptor, which mediates phagocytosis of particles opsonized by binding of immunoglobulin G antibodies. We found that troglitazone, rosiglitazone, and 15-deoxy-Δ12,14-prostaglandinJ2increase the ability of alveolar, but not peritoneal, macrophages to carry out phagocytosis mediated by the Fcγreceptor. Receptor expression was not altered but activation of the downstream signaling proteins Syk, ERK-1, and ERK-2 was observed. Although it was previously known that PPAR-γligands stimulate phagocytosis of unopsonized materials, this is the first demonstration that they stimulate phagocytosis of opsonized materials as well.


Sign in / Sign up

Export Citation Format

Share Document