Evaluating reference genes to normalize gene expression in human epileptogenic brain tissues

2010 ◽  
Vol 403 (3-4) ◽  
pp. 385-390 ◽  
Author(s):  
Stephan Wierschke ◽  
Sylvain Gigout ◽  
Peter Horn ◽  
Thomas-Nicolas Lehmann ◽  
Christoph Dehnicke ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meng Wang ◽  
Tingting Ren ◽  
Prince Marowa ◽  
Haina Du ◽  
Zongchang Xu

AbstractQuantitative real-time polymerase chain reaction (qPCR) using a stable reference gene is widely used for gene expression research. Suaeda glauca L. is a succulent halophyte and medicinal plant that is extensively used for phytoremediation and extraction of medicinal compounds. It thrives under high-salt conditions, which promote the accumulation of high-value secondary metabolites. However, a suitable reference gene has not been identified for gene expression standardization in S. glauca under saline conditions. Here, 10 candidate reference genes, ACT7, ACT11, CCD1, TUA5, UPL1, PP2A, DREB1D, V-H+-ATPase, MPK6, and PHT4;5, were selected from S. glauca transcriptome data. Five statistical algorithms (ΔCq, geNorm, NormFinder, BestKeeper, and RefFinder) were applied to determine the expression stabilities of these genes in 72 samples at different salt concentrations in different tissues. PP2A and TUA5 were the most stable reference genes in different tissues and salt treatments, whereas DREB1D was the least stable. The two reference genes were sufficient to normalize gene expression across all sample sets. The suitability of identified reference genes was validated with MYB and AP2 in germinating seeds of S. glauca exposed to different NaCl concentrations. Our study provides a foundational framework for standardizing qPCR analyses, enabling accurate gene expression profiling in S. glauca.


2017 ◽  
Vol 62 (No. 10) ◽  
pp. 426-434 ◽  
Author(s):  
M. Li ◽  
X. Wu ◽  
X. Guo ◽  
P. Bao ◽  
X. Ding ◽  
...  

Reverse transcription quantitative real-time PCR (RT-qPCR) is widely used to study the relative abundance of mRNA transcripts because of its sensitivity and reliable quantification. However, the reliability of the interpretation of expression data is influenced by several complex factors, including RNA quality, transcription activity, and PCR efficiency, among others. To avoid experimental errors arising from potential variation, the selection of appropriate reference genes to normalize gene expression is essential. In this study, 10 commonly used reference genes – ACTB, B2M, HPRT1, GAPDH, 18SrRNA, 28SrRNA, PPIA, UBE2D2, SDHA, and TBP – were selected as candidate reference genes for six fetal tissues (heart, liver, spleen, lung, kidney, and forehead skin) of yak (Bos grunniens). The transcription stability of the candidate reference genes was evaluated using geNorm, NormFinder, and BestKeeper. The results showed that the combination of TBP and ACTB provided high-quality data for further study. In contrast, the commonly used reference genes 28SrRNA, SDHA, GAPDH, and B2M should not be used for endogenous controls because of their unstable expression in this study. The reference genes that could be used in future gene expression studies in yaks were indentified.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Jocelyn De Wever ◽  
Tibo De Coninck ◽  
Helena Everaert ◽  
Emmanuel Ohene Afoakwa ◽  
Frauke Coppieters ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuping Li ◽  
Xiaoju Liang ◽  
Xuguo Zhou ◽  
Yu An ◽  
Ming Li ◽  
...  

AbstractGlycyrrhiza, a genus of perennial medicinal herbs, has been traditionally used to treat human diseases, including respiratory disorders. Functional analysis of genes involved in the synthesis, accumulation, and degradation of bioactive compounds in these medicinal plants requires accurate measurement of their expression profiles. Reverse transcription quantitative real-time PCR (RT-qPCR) is a primary tool, which requires stably expressed reference genes to serve as the internal references to normalize the target gene expression. In this study, the stability of 14 candidate reference genes from the two congeneric species G. uralensis and G. inflata, including ACT, CAC, CYP, DNAJ, DREB, EF1, RAN, TIF1, TUB, UBC2, ABCC2, COPS3, CS, R3HDM2, were evaluated across different tissues and throughout various developmental stages. More importantly, we investigated the impact of interactions between tissue and developmental stage on the performance of candidate reference genes. Four algorithms, including geNorm, NormFinder, BestKeeper, and Delta Ct, were used to analyze the expression stability and RefFinder, a comprehensive software, provided the final recommendation. Based on previous research and our preliminary data, we hypothesized that internal references for spatio-temporal gene expression are different from the reference genes suited for individual factors. In G. uralensis, the top three most stable reference genes across different tissues were R3HDM2, CAC and TUB, while CAC, CYP and ABCC2 were most suited for different developmental stages. CAC is the only candidate recommended for both biotic factors, which is reflected in the stability ranking for the spatio (tissue)-temporal (developmental stage) interactions (CAC, R3HDM2 and DNAJ). Similarly, in G. inflata, COPS3, R3HDM2 and DREB were selected for tissues, while RAN, COPS3 and CS were recommended for developmental stages. For the tissue-developmental stage interactions, COPS3, DREB and ABCC2 were the most suited reference genes. In both species, only one of the top three candidates was shared between the individual factors and their interactions, specifically, CAC in G. uralensis and COPS3 in G. inflata, which supports our overarching hypothesis. In summary, spatio-temporal selection of reference genes not only lays the foundation for functional genomics research in Glycyrrhiza, but also facilitates these traditional medicinal herbs to reach/maximize their pharmaceutical potential.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fei Xiong ◽  
Xiangyun Cheng ◽  
Chao Zhang ◽  
Roland Manfred Klar ◽  
Tao He

Abstract Background Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) remains one of the best-established techniques to assess gene expression patterns. However, appropriate reference gene(s) selection remains a critical and challenging subject in which inappropriate reference gene selction can distort results leading to false interpretations. To date, mixed opinions still exist in how to choose the most optimal reference gene sets in accodrance to the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guideline. Therefore, the purpose of this study was to investigate which schemes were the most feasible for the identification of reference genes in a bone and cartilage bioengineering experimental setting. In this study, rat bone mesenchymal stem cells (rBMSCs), skeletal muscle tissue and adipose tissue were utilized, undergoing either chondrogenic or osteogenic induction, to investigate the optimal reference gene set identification scheme that would subsequently ensure stable and accurate interpretation of gene expression in bone and cartilage bioengineering. Results The stability and pairwise variance of eight candidate reference genes were analyzed using geNorm. The V0.15- vs. Vmin-based normalization scheme in rBMSCs had no significant effect on the eventual normalization of target genes. In terms of the muscle tissue, the results of the correlation of NF values between the V0.15 and Vmin schemes and the variance of target genes expression levels generated by these two schemes showed that different schemes do indeed have a significant effect on the eventual normalization of target genes. Three selection schemes were adopted in terms of the adipose tissue, including the three optimal reference genes (Opt3), V0.20 and Vmin schemes, and the analysis of NF values with eventual normalization of target genes showed that the different selection schemes also have a significant effect on the eventual normalization of target genes. Conclusions Based on these results, the proposed cut-off value of Vn/n + 1 under 0.15, according to the geNorm algorithm, should be considered with caution. For cell only experiments, at least rBMSCs, a Vn/n + 1 under 0.15 is sufficient in RT-qPCR studies. However, when using certain tissue types such as skeletal muscle and adipose tissue the minimum Vn/n + 1 should be used instead as this provides a far superior mode of generating accurate gene expression results. We thus recommended that when the stability and variation of a candidate reference genes in a specific study is unclear the minimum Vn/n + 1 should always be used as this ensures the best and most accurate gene expression value is achieved during RT-qPCR assays.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Matuszewska ◽  
Tomasz Maciąg ◽  
Magdalena Rajewska ◽  
Aldona Wierzbicka ◽  
Sylwia Jafra

AbstractPseudomonas donghuensis P482 is a tomato rhizosphere isolate with the ability to inhibit growth of bacterial and fungal plant pathogens. Herein, we analysed the impact of the carbon source on the antibacterial activity of P482 and expression of the selected genes of three genomic regions in the P482 genome. These regions are involved in the synthesis of pyoverdine, 7-hydroxytropolone (7-HT) and an unknown compound (“cluster 17”) and are responsible for the antimicrobial activity of P482. We showed that the P482 mutants, defective in these regions, show variations and contrasting patterns of growth inhibition of the target pathogen under given nutritional conditions (with glucose or glycerol as a carbon source). We also selected and validated the reference genes for gene expression studies in P. donghuensis P482. Amongst ten candidate genes, we found gyrB, rpoD and mrdA the most stably expressed. Using selected reference genes in RT-qPCR, we assessed the expression of the genes of interest under minimal medium conditions with glucose or glycerol as carbon sources. Glycerol was shown to negatively affect the expression of genes necessary for 7-HT synthesis. The significance of this finding in the light of the role of nutrient (carbon) availability in biological plant protection is discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tingting Li ◽  
Weigao Yuan ◽  
Shuai Qiu ◽  
Jisen Shi

AbstractThe differential expression of genes is crucial for plant somatic embryogenesis (SE), and the accurate quantification of gene expression levels relies on choosing appropriate reference genes. To select the most suitable reference genes for SE studies, 10 commonly used reference genes were examined in synchronized somatic embryogenic and subsequent germinative cultures of Liriodendron hybrids by using quantitative real-time reverse transcription PCR. Four popular normalization algorithms: geNorm, NormFinder, Bestkeeper and Delta-Ct were used to select and validate the suitable reference genes. The results showed that elongation factor 1-gamma, histone H1 linker protein, glyceraldehyde-3-phosphate dehydrogenase and α-tubulin were suitable for SE tissues, while elongation factor 1-gamma and actin were best for the germinative organ tissues. Our work will benefit future studies of gene expression and functional analyses of SE in Liriodendron hybrids. It is also serves as a guide of reference gene selection in early embryonic gene expression analyses for other woody plant species.


Sign in / Sign up

Export Citation Format

Share Document