RA-XII exerts anti-oxidant and anti-inflammatory activities on lipopolysaccharide-induced acute renal injury by suppressing NF-κB and MAPKs regulated by HO-1/Nrf2 pathway

2018 ◽  
Vol 495 (3) ◽  
pp. 2317-2323 ◽  
Author(s):  
Xusheng An ◽  
Futai Shang
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Liu Tongqiang ◽  
Liu Shaopeng ◽  
Yu Xiaofang ◽  
Song Nana ◽  
Xu Xialian ◽  
...  

Contrast-induced acute renal injury (CI-AKI) has become a common cause of hospital-acquired renal failure. However, the development of prophylaxis strategies and approved therapies for CI-AKI is limited. Salvianolic acid B (SB) can treat cardiovascular-related diseases. The aim of the present study was to assess the effect of SB on prevention of CI-AKI and explore its underlying mechanisms. We examined its effectiveness of preventing renal injury in a novel CI-AKI rat model. Compared with saline, intravenous SB pretreatment significantly attenuated elevations in serum creatinine and the histological changes of renal tubular injuries, reduced the number of apoptosis-positive tubular cells, activated Nrf2, and lowered the levels of renal oxidative stress induced by iodinated contrast media. The above renoprotection of SB was abolished by the PI3K inhibitor (wortmannin). In HK-2 cells, SB activated Nrf2 and decreased the levels of oxidative stress induced by hydrogen peroxide and subsequently improved cell viability. The above cytoprotection of SB was blocked by the PI3K inhibitor (wortmannin) or siNrf2. Thus, our results demonstrate that, due to its antioxidant properties, SB has the potential to effectively prevent CI-AKI via the PI3K/Akt/Nrf2 pathway.


2020 ◽  
Vol 874 ◽  
pp. 173026 ◽  
Author(s):  
Fuquan Jin ◽  
Xueqin Chen ◽  
Hao Yan ◽  
Zhifei Xu ◽  
Bo Yang ◽  
...  

2019 ◽  
Author(s):  
Chem Int

Coumarin and its derivatives are widely spread in nature. Coumarin goes to agroup as benzopyrones, which consists of a benzene ring connected to a pyronemoiety. Coumarins displayed a broad range of pharmacologically useful profile.Coumarins are considered as a promising group of bioactive compounds thatexhibited a wide range of biological activities like anti-microbial, anti-viral,antiparasitic, anti-helmintic, analgesic, anti-inflammatory, anti-diabetic, anticancer,anti-oxidant, anti-proliferative, anti-convulsant, and antihypertensiveactivities etc. The coumarin compounds have immense interest due to theirdiverse pharmacological properties. In particular, these biological activities makecoumarin compounds more attractive and testing as novel therapeuticcompounds.


2020 ◽  
Vol 18 ◽  
Author(s):  
Gordana Joksic ◽  
Djordje Radak ◽  
Emina Sudar-Milovanovic ◽  
Milan Obradovic ◽  
Jelena Radovanovic ◽  
...  

Background: Gentiana lutea (GL), commonly known as yellow gentian, bitter root, and bitterwort, belongs to family Gentianaceae. GL belongs to genus Gentiana, which is a rich natural source of iridoids, secoiridoids, xantones, flavonoids, triterpenoids, and carbohydrates. Medicinal plants from Gentiana species have anti-oxidant, anti-inflammatory, anti-mitogenic, anti-proliferative, and lipid-lowering effects, as well as a cardioprotective, hypotensive, vasodilator and anti-platelet activities. Objective: We reviewed the recent literature related to the effects of Gentiana species, and their active components on vascular diseases. Methods: Data used for this review were obtained by searching the electronic database [PUBMED/MEDLINE 1973 - February 2020]. The primary data search terms of interest were: Gentiana lutea, Gentienacea family, phytochemistry, vascular diseases, treatment of vascular diseases, anti-oxidant, anti-inflammatory, anti-atherogenic. Conclusion: Gentiana species and their constituents affect many different factors related to vascular disease development and progression. Therefore, Gentiana-based therapeutics represent potentially useful drugs for the management of vascular diseases.


Author(s):  
Thea Magrone ◽  
Emilio Jirillo ◽  
Manrico Magrone ◽  
Matteo Antonio Russo ◽  
Paolo Romita ◽  
...  

Background: Our previous findings demonstrated that in vitro supplementation of polyphenols, extracted from seeds of red grape (Nero di Troia cultivar), to peripheral lymphomonocytes from patients affected by allergic contact dermatitis (ACD) to nickel (Ni) could reduce release of pro-inflammatory cytokines and nitric oxide (NO), while increasing levels of interleukin (IL)-10, an anti-inflammatory cytokine. Objective: To assess whether an intervention with oral administration of polyphenols leads to a reduction of peripheral biomarkers in ACD patients. Method: At T0, 25 patients affected by ACD to Ni were orally administered with 300 mg polyphenols prodie extracted from seeds of red grape (Nero di Troia cultivar) (NATUR-OX®) for 3 months (T1). Other 25 patients affected by ACD to Ni received placebo only for the same period of time. Serum biomarkers were analyzed at T0 and T1. In both groups seven drop outs were recorded. Result: At T1 in comparison to T0, in treated patients, values of IFN-γ, IL-4, IL-17, PTX3 and NO decreased, while IL-10 levels increased when compared with T0 values. Conversely, in placebo-treated patients no modifications of biomarkers were evaluated at T1. Conclusion: Present laboratory data rely on the anti-oxidant, anti-inflammatory and anti-allergic properties of polyphenols.


2021 ◽  
Vol 11 (13) ◽  
pp. 6055
Author(s):  
Akhtar Ali ◽  
En-Hyung Kim ◽  
Jong-Hyun Lee ◽  
Kang-Hyun Leem ◽  
Shin Seong ◽  
...  

Prolonged inflammation results in chronic diseases that can be associated with a range of factors. Medicinal plants and herbs provide synergistic benefits based on the interaction of multiple phytochemicals. The dried root of Scutellaria baicalensis Georgi and its compounds possess anti-inflammatory, anti-oxidative, and anticancer effects. Processing is a traditional method to achieve clinical benefits by improving therapeutic efficacy and lowering toxicity. In this study, we investigated the anti-inflammatory and anti-oxidant effect of processed Scutellaria baicalensis Georgi extract (PSGE) against lipopolysaccharide (LPS) stimulated RAW 264.7 cells. Data using Griess assay and ELISA showed that PSGE decreased nitric oxide and prostaglandin E2 (PGE2) levels against LPS. PSGE treatment up-regulated 15-hydroxyprostaglandin dehydrogenase (PGDH), while cyclooxygenase (COX)-2 and microsomal prostaglandin E synthase (mPGES)-1 expression did not change. Interestingly, PGE2 inhibition was regulated by prostaglandin catabolic enzyme 15-PGDH rather than COX-2/mPGES-1, enzymes essential for PGE2 synthesis. Additionally, PSGE-suppressed LPS-induced IL-6 and TNF-α production through NF-κB signaling. NF-κB release from an inactive complex was inhibited by HO-1 which blocked IκBα phosphorylation. The ROS levels lowered by PSGE were measured with the H2DCFDA probe. PSGE activated NRF2 signaling and increased antioxidant Hmox1, Nqo1, and Txn1 gene expression, while reducing KEAP1 expression. In addition, pharmacological inhibition of HO-1 confirmed that the antioxidant enzyme induction by PSGE was responsible for ROS reduction. In conclusion, PSGE demonstrated anti-inflammatory and anti-oxidant effects due to NRF2/HO-1-mediated NF-κB and ROS inhibition.


Sign in / Sign up

Export Citation Format

Share Document